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Abstract. The analytical treatment of retardation effects in calculating lightning electromag-
netic fields far from the source has often involved the use of a so-called F factor. The
literature concerning the F factor in the lightning field equations is often confusing and
sometimes in error. The aim of this paper is to clarify, to correct when needed, and to extend
previous views of the F factor by considering and consolidating the various situations, both
mathematically and physically, in which this factor can occur. The F factor arises because of
the retardation effects occurring when the distance to the observer from a point on a propa-
gating current is changing with time. In this paper we (1) discuss the various situations in
which the F factor can arise, such as in the determination of the “radiating” channel length
“seen” by the observer, in the calculation of fields due to a propagating current wave up or
down the discharge channel, and in the calculation of fields due to a propagating current dis-
continuity extending the channel upward; (2) give a unifying physical interpretation for this
factor; and (3) show that the retardation effects in calculating lightning fields can be ac-
counted for without the explicit use of an F factor. Relative to item 2 above, we will show
that for simple return-stroke models like the transmission line (TL) and traveling current
source (TCS) models, in which the current at one point on the channel appears at another
point at another time, the F factor associated with current behind the front can be interpreted
physically as the ratio of the apparent propagation speed (upward or downward) of the
current wave "seen" by a distant observer to its actual speed. In the TL model, a current
wave moves upward at speed v, the same speed as that of the front, and the F factor is given
by [1-(v/c) cos 0], where 0 is the angle between the direction of propagation of the source
and the line joining the source point and the field point (observer), and c is the speed of light
in vacuum. In the TCS model, a current wave moves downward at a speed equal ¢, and the F
factor is given by [1+cos 8]"'. The F factor associated with an upward propagating current
discontinuity can always (in any model) be interpreted physically as the ratio of the apparent
propagation speed of the discontinuity to its actual speed and is given by the same expression

as for the F factor for the upward propagating current wave in the TL model.

1. Introduction

The cloud-to-ground lightning return-stroke channel is
generally idealized as a vertically extending line with one end
fixed at ground. In most retum-stroke models the current versus
time is specified at each point along the extending line. General
expressions for the remote electric and magnetic fields due to
any assumed channel current distribution have been derived by
Uman et al. [1975]. In order to use these time-domain integral
equations in lightning electric and magnetic field calculations,
appropriate account must be taken of the different retarded times
t-R/c, for different points on the channel, where R is the distance
from the source point to the observer. For the transmission line
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(TL) return-stroke model, characterized by a current wave
moving vertically upward from ground without distortion or
attenuation at the same constant speed as the discharge front,
Uman et al. [1973] give an approximate analytical expression
for the electric radiation field observed at ground level very far
from the lightning channel. In this approximation the field is
directly proportional to the channel-base current multiplied by
the propagation speed v. We shall show (see also LeVine and
Willett [1992] and Krider [1992]) that for the case of a channel
that is not perpendicular to the observer's line of sight (e.g., an
elevated observation point, an elevated vertical channel
segment, or a nonvertical channel segment), the field/current
équation (2) of Uman et al. [1973] relating the magnitude of the
current at the channel (or channel segment) origin and the
magnitude of the electric radiation field at the distant
observation point on ground, rewritten here as E(rt) =
Vi(t-r/c)/(2Te’r), should be multiplied by a geometrical factor
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sin /[ 1-(v/c) cos a], where o is the angle between the direction
of propagation of the discharge front and the line joining the
channel origin and the field point (observer), and ¢ is the speed
of light. Part of this expression, [1-(v/c)cosa]”, is sometimes
called the F factor and is due to the retardation effects occurring
when the distance to the observer from a point on the traveling
current wave is changing with time. We shall show that the
factor arises in analytical solutions of the type derived by Uman
and McLain [1970a], LeVine and Willett [1992], and Krider
[1992] whenever there is source motion that is not perpendicular
to the observer’s line of sight. We find the literature concerning
the F factor to be often confusing and sometimes in error. The
present paper can be viewed as clarification, generalization, and
extension of the previous work on the F factor by LeVine and
Meneghini [1978], Meneghini [1984], Rubinstein and Uman
[1990, 1991], LeVine and Willett [1992], and Krider [1992].

2. Formulation of the Problem

We model the lightning return stroke as a vertically
extending electrical discharge with its origin at ground. Assume
that the front of the discharge is moving with a speed v, which
is usually a significant fraction of the speed of light. Ahead of
the discharge front (or tip) the current is zero. Behind the

L{t)
L'(t

Q

t=0

THOTTAPPILLIL ET AL.: RETARDATION EFFECTS IN LIGHTNING FIELDS

discharge front the current is changing with time and is different
at different heights along the channel. Various retumn-stroke
models describe how the current at a given height z' is related
to the current at ground z' = 0, at any given instant of time ¢. To
find the electric and magnetic fields due to the time- and
height-varying current in the channel, consider first a
differential-length segment of the channel dz’ at a height 2 as
shown in Figure 1. The element dz’ is stationary even though
the current in it is changing with time. The vector potential ( as
a function of time) from the time-varying current in dz’ can be
found as

— = P izt -REH) .o, )
4T R(z)

Note that in (1) we used retarded current, i.e., current evaluated
at retarded times #-R(z’)/c, but we do not need any factor similar
to the factor [1-(v/c)cosO]" appearing in the expression for the
Lienard-Wiechert potential of a moving charge, because we are
finding the potential from the time-varying current in a
stationary element of length dz’ at a height z'. More discussion
on this point can be found in section 3. From the differential
vector potential given by (1) we can find the scalar potential d

Figure 1. Lightning channel-observer geometry used to formulate the problem. See text for details.
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and then the electric and magnetic fields as given by equations
(2) to (6) below [see Uman et al., 1975].

dd = -c? fv-dZdr Q)
— a —
dE = -Vd$ -—dd (3)
ot
dB = VxdA @)
—_ L,(f) —
E(rp = f dE &)

0
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where ¢, is the time at which the observer first "sees" the source,
and L'(¢) is the radiating length of the discharge “seen” by the
observer at time ¢, the so-called “retarded channel length” that
is determined in section 3. Note that the scalar and vector
potentials before the time #, are both equal to zero. Equations
(5) and (6) with the effect of ground neglected can be written in
spherical coordinates, following Uman et al. [1975], as
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Equations (7) and (8) above differ slightly from equations (9)
and (7), respectively, of Uman et al. [1975] in the following
way: Uman et al. considered an antenna of fixed length H, and
hence their upper limit of integration on channel height was H
instead of the retarded channel length L’(#) used in this paper.
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Further, the lower limit of integration on T in equation (9) of
Uman et al. [1975] for the electric field is zero, whereas in
equation (7) of this paper, the lower limit of integration on time
T is z'/v + R(z')c = t,(z'), the time taken by a return stroke to
reach a height z’ plus the time taken by an electromagnetic
signal to travel from z’ to the observer. The time at which the
return stroke begins at z’ = 0 is chosen as ¢ = 0 (see Figure 1).
The observer "sees" no current in the channel at z’ before the
time #, (z'). Therefore the value of the integral remains the same
whether the lower integration limit on 7 is zero or £,(z'). As an
alternate but equivalent approach, one can find the vector
potential 4 (r,f) for the whole retarded length L'(f) as

L :

A, = Ko f() Mdz s 9
4T a R(zY

and then derive field expressions identical to those given by (7)
and (8). Equations (7) and (8) for calculating the fields from an
extending discharge are applicable to any straight discharge,
arbitrarily oriented with respect to the ground plane and attached
or not attached to it, with one end of the channel fixed in space,
provided that the z axis is chosen along the discharge and 2 is
oriented in the direction of propagation. However, if the effect
of the ground plane is to be considered or if the channel is
composed of zigzagging straight segments, the appropriate
coordinate transformations must be performed or a more
suitable coordinate system must be chosen [see LeVine and
Willett, 1992]). Equations (7) and (8) are exact for any
return-stroke speed and for any position of the observer with
respect to the channel, and they clearly do not contain any
explicit factor similar to the factor [1-(v/c)cos0]"! found in the
Lienard-Wiechert potential. Far from the lightning channel the
radiation fields are dominant and are given by the current
derivative terms in (7) and (8). For example, the radiation
electric field component is given by

L'o

1
4T€ f

L
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For the transmission line (TL) model applied to a vertical
channel of a length that is very small compared to the distance
to the observer from the channel and for a channel that is
perpendicular to the line of sight of the observer, equation (10a)
can be written in simplified form (see also Uman et al. [1973,
Equation (2)])

- v

-———i(O,t—B)f (10b)
4me,c’D c

where D is the horizontal distance between the observation
point and the channel base, and 7 is an upward directed unit
vector. Note that (10b) does not take into account the effect of
ground and is valid only for times before the current reaches the
channel top or for an extending discharge, as shown in later
sections. Equation (10b) has been derived for the case that all
channel source points are on a line essentially perpendicular to
the observer’s line of sight. That is, as the channel extends, all
the source points are assumed to remain approximately
equidistant from the observer. As will be shown later (see also
Rubinstein and Uman [1990], LeVine and Willett [1992], and
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Krider [1992]), if the channel is not essentially perpendicular to
the observer’s line of sight (for instance, for a vertical channel
and a close observer, for an elevated vertical channel, or for a
nonvertical channel), equation (10b) must be multiplied by the
geometrical factor sina/[1-(v/c)cosa), partly to take account of
retardation effects, where o is the angle between the.direction of
propagation and the line connecting the channel origin and the
distant observation point (see Figure 1). Uman and Mclain
[1970a], in deriving an equation for magnetic flux density due
to an individual leader step and observer at ground (their
equation (11)), failed to recognize this geometrical factor in its
entirety. Only sin o appears in their field/current equation. The
portion of the geometrical factor [1-(v/c)cose]! missing in the
work of Uman and McLain [1970a] is the F factor discussed in
section 1. It is worth noting again that for channels whose
lengths are very small compared to the distance and that are
essentially perpendicular to observer's line of sight, & = 0 so that
sin & = 1, the F factor [1-(v/c)cosa]” is equal to unity, and
hence the use by Uman and coworkers of equation (10b) (with
the right-hand side multiplied by 2 to take into account the
effects of a ground, assumed to be perfectly conducting) for
distant return strokes is correct. Considerable confusion
regarding the use of F factor exists in the literature. Krider
[1992] incorrectly interpreted the results of Rubinstein and
Uman [1990] and LeVine and Willett [1992], who introduce the
F factor into two special-case field equation, as suggesting that
all previously published expressions for lightning
electromagnetic fields that do not contain an explicit F factor are
incorrect if v is a significant fraction of the speed of light.
Kumar et al. [1995] erroneously claimed that the general
expressions (7) and (8) above require corrections involving the
F factor and used the erroneously “corrected” general
expressions to calculate the fields at distances from 50 m to 5
km, both on ground and above ground.

3. Theory

One familiar example of the use of the F factor [1-(v/c)
cosa]! is in the expression for the scalar potential of a
uniformly moving point charge, popularly known as the
Lienard-Wiechert (LW) potential. Therefore it is instructive to
begin our examination of the F factor by considering the origin
of the F factor in the LW potential. The concepts developed are
then applied to upward and downward propagating current
waves and to extending discharge channels.

3.1. Lienard-Wiechert Scalar Potential

A point charge is an approximation for a finite-size charge
distribution when the distance to the observer is very large
compared to the dimensions of the distribution. The Lienard-
Wiechert potential is an approximation to the potential of a
uniformly moving finite charge distribution if the size of this
distribution is very small compared to the distance to the point
where the potential is evaluated [Feynman et al., 1964;
Panofsky and Phillips, 1962]. Because of the finite speed of
electromagnetic waves, an observer at a given time “sees” the
charge and its effects from an earlier time at an earlier position.
If the distances to the observer from each point on the finite-size
charge are essentially the same, then the scalar potential at the
position of the observer at time ¢ is given in terms of the
retarded position and retarded value of the charge as

_ g(t-R/c)

11
4me R (n
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where R is the distance from the observer to the charge at a time
R/c earlier (retarded distance), and g(s-R/c) is the value of the
charge at a time R/c earlier. However if the different parts of the
finite charge distribution are at different distances from the
observer, the retarded time is different for those parts. Then the
general expression for the scalar potential of a finite charge
distribution is obtained by integrating the contributions to the
potential from each elemental charge volume within the retarded
charge volume and is

1 fp"(t_R/C)dV’
4me, R
V/

o@ = (12)

where p, is the volume charge density, dV’ is the elemental
retarded volume, R is the retarded distance, and V is the
retarded volume over which the integration is carried out. Let
us first consider the application of (12) for the case of a line
charge of length L, moving along its axis with uniform speed v
(Figure 2). Later, we will consider the application of (12) to a
point charge as a special case of L being vanishingly small
compared to the retarded distance to the observer and thereby
show the origin of the factor [1-(v/c)cosa]”. For simplicity,
assume that the line has a uniform charge density p and total
charge g = pL. Then the scalar potential is given by

Ll
b= 1 fp(t_R/c)dz’ (13)
4me, ?

Rz

where dz’ is a retarded elemental length of the line charge at
position z’ and at a retarded distance R(z') from the observer,
and L' is the retarded line length, the length of the line “seen”
by the observer at time t. We can find L’ as follows: In Figure
2a the moving line charge has a velocity component toward a
stationary observer at P, and in Figure 2b the moving line
charge has a velocity component away from the observer.
Assume that at =0, the lower end of the line charge is at point
Q and its upper end at T. A line of length » connecting Q with
P makes an angle o with the direction of motion of the charged
line. The time required for an electromagnetic signal to
propagate from Q to P is r/c, that is; the lower end of the
charged line when it was at point Q is "seen" by the observer at
t=r/c. In Figure 2a, where the velocity of the line has a
component toward P, the distance from T to P is shorter than
from Q to P, and hence the observer will "see" T first and
successively lower sections until at #=r/c the lower end Q, i.e.,
the full length of line L, is seen at t=r/c. Further, since the line
is moving, the positions of its lower and upper ends change with
time (both move upward). At t=r/c, the upper end of the
moving line is "seen" by the observer in position 7' at a distance
R. Tt follows that at f=r/c, an observer at P simultaneously
"sees" points Q) (origin) and T (and all points between Q and
T'); that is, the length L’ of the line "seen" by the observer is
greater (for the geometry shown in Figure 2a) than the physical
length L of the line. This apparent or retarded length L’ depends
on the velocity v and the geometry. From Figure 2a it follows
that

/-
L L ,R_-r (14)
v c ¢
where
R = {r*+L”-2r'Lcosa (15)
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Figure 2. Charged line (a) moving closer to observer at P and (b) receding from observer at P. See text for

details.

In Figure 2b the observer “sees” the top end T of the line
passing through Q in a time L/v+#/c. In that time the bottom
end has moved and is "seen" by the observer at position Q' ata
distance R. The apparent length L' of the line is smaller than the
physical length L of the line. From Figure 2b it follows that

L'’ R L  r

_— et — = -+ —
v c v [+

(16)

which is in the same form as (14). Now, referring to Figure 2a,
we will examine solutions of (14) for L' for different positions
of P with respect to the line. For 0. = 0°, i.e., when the observer
is along the axis of the moving line with the line approaching
the observer, R=r-L’, and (14) yields the following expression
for L":

L

L' = )

1-Y
¢

From (17) it is clear that when the line is approaching the
observer L">L; that is, the apparent length is greater than the
actual. For o = 180°, i.e., when the observer is along the axis
of the moving line with the line receding from the observer, (14)
yields

L

1+

4

L' =

(18)

From (18) it is clear that when the line is receding from the
observer L'<L; that is, the apparent length is smaller than the
actual length. For an arbitrary e, if L<<r, then R=r-L’cos o, and
therefore (14) leads to (see also Griffiths [1981, p. 367])

(19)

Equation (14) (and (16)) can be written as a second degree
polynomial in L', and a general solution for L', for any arbitrary
angle o and ratio L/7, can be found as

Ad 1 -Xcosoc
c c

¢ (20)

2 2
+ E-X\j(l-zcosoc) —2£[cosa—1) +(£)
r c c r c r

Note that the general solution for L’ given in (20) does contain
the expression [1 - (v/c) cos a], found in the F factor, but it does
not appear as a simple “correction” to L as in the case of
far-distance approximation given in (19). If L<<r, the point
charge approximation (19) applies and equation (13) reduces to

r

_ P(t-Rlc) L
41re°R 1 —Xcosa
c
2n
_ q(t-Ric) 1
4meR 1 —xcosa
c

where R is the retarded position of the charge. Equation (21) is
the retarded scalar potential or Lienard-Wiechert scalar potential
of a uniformly moving point charge in which the F factor
appears as a correction to the potential of a point charge at rest.
If the far-distance approximation does not apply, (13) has to be
used for finding the potential with the upper limit of integration,
L’, given by (20). In the integral equation (13) each point along
the moving line charge is at a different distance from the
observer, and it may appear reasonable that to take care of
retardation effects each differential length dz’ of the channel
should be multiplied by the F factor. However, this reasoning
is not correct because the differential length dz’ in (13) is the
retarded differential length. The incremental time required, as
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seen by the observer, for a point on the line charge to move an
incremental distance Az’ is given by

/ / A A
At = Az’ , Rz +Az") R(z') 22)
v c (4
In the limit Az’~0, (22) can be rearranged and written as
/
z _ v . vF(z) (23)
dt

1-YecosO(z)
c

where 0(z') is the angle between the direction of motion at 2’
and the observer’s line of sight. In (23) the F factor appears as
a modifying factor to the propagation speed v. It is clear from
(23) that for different positions along the line charge the
apparent speed given by (23) is different, with apparent speed
equal to v only when 0(z')=90° i.e., when the motion is
perpendicular to the observer’s line of sight. By the same
reasoning used to formulate (22), we can show that the apparent
speed of a uniformly moving point charge is given by (23),
containing the F factor.

In section 3.2 the results obtained for a moving line charge of
fixed length and constant charge density are adapted to an
extending discharge with one end fixed in space, a typical
model for the lightning return stroke. In general, the charge
density and current in the lightning channel vary as a function
of height and time.

3.2. Extending Discharge With One End Fixed

Consider a lightning return-stroke channel with one end fixed
at O as shown in Figure 1. It takes a time r/c for the information
from Q to reach the observer at P and hence the observer "sees"
the channel emerging from Q at time r/c. The length L(f) of the
channel at a time ¢-7/c is given by

L(H = v{ t —L)
c

which corresponds to length L in Figures 2a and 2b. If the line
is assumed to be perpendicular to a perfectly conducting ground
plane passing through @, then L’ in Figures 2a and 2b
corresponds to the apparent length L'(f) of the channel and its
image, respectively. Replacing L in (20) with L(f) given by
(24), we obtain the general expression for L'(t) applicable to the
lightning return-stroke,

@49

V2
——cos{
CZ

r

2

Lo =

1

o

25)

2 —X\J [ 1 —X—z) +—Kit—2~+12—cos2a -2 osa

r c r
If we define the time ¢ such that it is the sum of the time
required for the return-stroke wavefront to reach a height L'(¢)
and the time required for a signal to travel from the wavefront
at L'(¢) to the observer at P, ¢ can be written as

_ L, RC@
v c

t (26a)
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and from Figure 1,

RL'®) = \r2+L?(t) -2L (rcosa (26b)
The retarded length L'(f) given in (25) can also be obtained by
directly solving (26) for L'(¢). If all channel sections were
equidistant from the observer, i.e., if the discharge were to
extend in a circular arc of radius r with the observer at the
center, the length of the discharge seen by the observer would
be L'(f) = v(t-r/c). If electromagnetic propagation were with
infinite speed, the observer would see the actual channel length;
that is, if ¢ in (25) is replaced by «, L'(f) = v¢. If the ground is
treated as perfectly conducting, (25) can also be used, with «
replaced by (180° ), to find the apparent length of the channel
image "seen" by the observer. Even if the velocity of the
discharge front is varying with height, (26) is valid if v is
replaced by an "average" velocity (see Thottappillil et al. [1991]
and Thottappillil and Uman [1994] for details) and can be
solved for L'(z) iteratively.

If the channel is straight and vertical and its length is very
small compared to the distance to the observer, i.e., if L'(£)<<r,
then R(L'(f)) can be approximated as (see Figure 1)

RIL'(D) = r-L(Hcosa 27)
Substituting (27) in (26a) we obtain
L = 280 - pye-ric) (28)
1- A4 cos o

c

where v-(t-r/c) is the actual length of the discharge at time ¢.
Thus the F factor F=[1-(v/c)cos a]' appears in the far-distance
approximation to the retarded channel length that can be used in
equations (7), (8), and (10a).

For any given model and any given channel-base current,
(10a) can be evaluated numerically. For each value of ¢ the
integration in (10a) has to be carried out through the upper limit
L'(f), where L'(?) is either given by the analytical expression
(25) or by the numerical solution of (26). When the electric
radiation field is calculated numerically as indicated above,
there is no need for the explicit use of the F factor.

So far we have not made any specific assumptions regarding
the charge and current distributions along the return-stroke
channel. Many return-stroke models specify the relationship
between the time-varying current at ground and current at a
height on the channel [e.g., Rakov, 1997]. In some return-stroke
models currents are assumed to travel up and in others to travel
down the return-stroke channel behind the upward extending
discharge front (e.g., transmission line model and traveling
current source model, respectively). To be general, let us
assume that the speed of travel of the current wave is u, different
from the speed of travel of the discharge front v. The
incremental time required, as seen by the observer, for a point
on the current wave to move an incremental distance Az’ is
given by

At =

Bz’ RE'+Azhy Rz
c

u c

29)
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In the limit Az'-0, (29) can be rearranged and written as

dz'ldt _ 1
u

= F(z') (30)

1-2cos8(z
¢

where dz'/dt is the speed of the wave as “seen” by the observer,
and 0(z") is same as in (23). Note that in (29) and (30) the speed
u can have either sign, positive if # is in the same direction as v,
and negative if u is in the direction opposite to v. From (30) it
is evident that the F factor is the ratio of the apparent speed to
the actual speed of traveling waves in a return stroke channel.

Differentiating both sides of equation (26a) and rearranging,
we find that the apparent speed of the discharge front is

/
e _ 1

Tepy
dt 1+ L'(®)-rcoso

¢ JLP@t) +r? -2L (B)rcosa

€))

1
=y

1-YeosO(LH
c

Note that the factor [1-(v/c)cos8(L)]" in (31) is obtained for a
traveling step function in Rubinstein and Uman [1990] using an
alternate derivation involving Heaviside and delta functions. As
follows from (31), this factor is the ratio of the apparent speed
to the actual speed of the propagating discharge front, depends
only on the front propagation speed and geometry, and is
applicable to the discharge front discontinuity in any
return-stroke model. The apparent speed dL'(f)/dt of the
discharge front can also be calculated numerically as
{L'(t+AN-L'(t)}/At, where At is the incremental time, and
L'(t+A?) and L'(f) are numerically determined from (26a).

In section 4 we consider first the transmission line (TL)
model for the return stroke used by Uman et al. [1973], LeVine
and Willett [1992], and Krider [1992] and inspect how the
factor [1-(v/c)cosa]” arises in the approximate expression
relating the channel-base current and the remote radiation field.
Then we consider the traveling current source (TCS) model and
show that the approximate expression relating the channel-base
current and the remote radiation field (excluding the radiation
from the front) involves an F factor equal to [1+cosa]”, clearly
different from that for the TL model. Finally, we generalize the
field/current equations to include radiation from the front,
inherent in the TCS model and possible in the TL model if there
is a current discontinuity at the front.

4. Application to Return-Stroke Models

4.1. Radiation Field/Current Relation
for the Transmission Line Model

In the transmission line (TL) model of the return stroke, a
current wave originates at ground and propagates up the channel
without attenuation and distortion [e.g., Uman and McLain,
1969]. The retarded current distribution along the channel can
be expressed in terms of the current at the base of the channel as

,(z/,t—%")) - ,{0,,_27’_!&(62_’)] (32)

From Figure 1, R(z’) can be written as

RizH = z”?+r?-2z'rcosa

(33)
which is same as (26b) except it is for any z’, not only for
z'=L'(s).

The variables ¢ and z' are independent since z' is arbitrarily
chosen, and thus we can write

3i(0,t -z v -R(z)le) _
oz’
_ 0i(0,t=2'Ilv -R(zNlc) At -z'Iv -R(zle)
At-z'Iv-R(zHc) oz’

_ _0i(0t-z v - R(zYe) 1 1+2 z/-rcosa
ot v

¢ \/z P +r?-2z'rcosa
Rearranging (34), we obtain the relationship between the time

and the spatial derivatives of the retarded current, involving the
F factor,

v ¢ = - v d 'V'FTL(Z/) (35)

ot 3z’

where the factor F,(z') is a function of z’ and is given by

/ -1
z' —-rcoso

c 7 c

Fpih = [1+X
2 +rt-2z'rcosa

-1
1-YcosO(z ’)]

(36)

and 6(z’) is the angle between the direction of propagation and
a line joining the point P with the point on the channel at height
z' (see Figure 1). Here we see how the F factor arises in
analytically converting the time derivative of the retarded
current into its spatial derivative. The physical meaning of the
F factor in this context of a traveling wave is the same as in
(30). Replacing « with v, we observe that (30) and (36) become
identical. Using (32) and (36), we can rewrite the equation for
the radiation field (10a) for the TL model as

Lo

f sin ©
c2R(z"

0

Er(r,e,t) = - #
0

(7

v F,(z 0}

0 5oy P
0i(0,t~z'fv -R(z )/c) a0

oz’
The integration in (37) can be performed analytically if the

observer is distant, as is also necessary for the radiation field to
be dominant, so that L'(f)<<r, 0=a, R(z") =r,

1. sina v
4Te

E (ron = -

v
0 €T 1-Zcosa
c

L/(t) / A
[ di(o,t—z—-ﬁ(il] &
v

4

i(0,0) —;{ 0,¢- 1) ]a
v c
—Cos
c (38)

1 sina v
4Te, o2 1-
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noting that i(0,¢ - L'({)/v - R(L'(H))/c) = i(0,0), as follows from
equation (26a). The factor [1-(w/c)cos]” in (38) appears as a
multiplier to the speed v of the upward propagating current
wave in the channel, which in the TL model is the same as the
speed of the discharge front. The factor is equal to unity when
a=90° (when the channel is perpendicular to the line of sight of
the observer), the situation considered by Uman et al. [1973]
(see equation (10b) above). In the Appendix we further discuss
equation (38) and compare it with equation (92) of LeVine and
Willett [1992], also based on the TL model. It is worth noting
that the term containing i(0,0) in (38) will be canceled by an
equal and opposite-sign term representing the radiation from the
front, a result derived in a later section.

4.2. Radiation Field/Current Relation for the Traveling
Current Source Model

In the previous section we found how the F factor can arise
in the relation between the time and spatial derivatives of the
retarded current for the TL model and interpreted the factor as
the ratio of the apparent speed to the actual speed of the current
wave. In the traveling current source (TCS) model proposed by
Heidler [1985] the relation between the channel current at z' and
the channel-base (z'=0) current is given by

i(z/t——R(z/)) = i(0t+z—/——~——R(z/)]
’ c ’ c c

where R(z') is given by (33). Equation (39) represents a model
in which the upward propagating, with speed v, return-stroke
wavefront instantaneously activates current sources distributed
along the lightning channel as it passes them. The resultant
current is assumed to travel downward at the speed of light c,
without distortion and attenuation. We first consider the current
behind the return-stroke front. In the TCS model there always
exists a current discontinuity at the return-stroke front, the
retardation effects of that discontinuity being considered
separately in a later section. The variables ¢ and 2z’ are
independent since z' is chosen arbitrarily, and hence using the
same procedure as in the case of TL model, we can derive for
the TCS model the relationship between the time and spatial
derivatives of the retarded current,

(39

ofoss2L 201

c c _
oz’

o 0s+2 -RED| o, 20 RGD
_ e c J. c c

5/ t+z_/_R(z/) &'

c c
ai 0+ % -RED
_ c c 1 1- z’~rcosa
ot ¢ z?+rt-2z'rcosa

(40a)
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Rearranging the terms in (40a), we get

/ A / A
a,{(,,t+z__k_(z_>) a,{o,,+z__£@

c [ c c

ot ) dz!

) e FTCS(Z /)
(40b)

where the factor Fr(z"), clearly different from Fp,(z”), is

1 1
Fres(z h = = ; 1)
1- z' —rcos(0) 1+cos0(z)
z”? +r2-2z'rcosa

and O(z") is as shown in Figure 1. Physical interpretation of the
factor Fyegis similar to that given earlier for Fr;. If we replace
u with -c in (30), we obtain (41).. Substituting (40b) in (10a),
using the far-field approximations, i.e., letting L'(¢) <<r, 0~a,
and R(z')=r, performing the integration, and using (26a), we
obtain

1 sino c
4“60 czr 1 +cos

-i0-L
[

Equation (42) gives the radiation electric field from the channel
current behind the discharge front only; that is, it does not take
account of the radiation from the current discontinuity at the
discharge front, inherent in the TCS model, which is considered
below.

E(ron =

i( 0.L /(t)( 1, l] )
(42)
&

4.3. Current Discontinuity at the Discharge Front (General)

The TL model may or may not have a discontinuity in current
at the front. If current at ground level is zero at ¢ = 0, there is no
discontinuity in the TL model, as we shall see in section 4.4.
The TCS model involves a current discontinuity at the front
whether or not the current at ground level at =0 is zero. As a
result, (10a) has to be applied separately to the current behind
the front and to the current discontinuity at the front. We show
now how the F factor arises in the general radiation field
expression for a current discontinuity at the discharge front.

Let i(z',t-R(z')/c) describe the retarded current in the
return-stroke channel. Then the current and current derivative
at the return-stroke front "seen" by the observer can be
expressed, using (26a), as

i[L ’(t),t—w] - i[L /(t),L—/(i)) (43a)
c

v

Bi(L ()t -RIL'()e) _ dill'().L " (®)v)
ot dt

(43b)

Let L' () and L'.(¢) be the positions just below and just above
the wavefront at L'(¢), respectively. The integral of the current
derivative across the wavefront is equal to the product of the
current at the wavefront and the velocity of the wavefront as
seen by the observer at P. That is,
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Lf ? 3L (1), - REL '@®)/c) &' =i L't /(t)] L0 (44
/ ” Ty dt
L'

We have seen earlier that the apparent speed of the discharge
front dL'(f)/dt is given by (31), containing the F factor.
Substituting (31) in (44) and using the resulting equation in
(10a), we find the radiation electric field from a traveling current
discontinuity (the so-called "turn-on" field [Uman and McLain,
1970a])

E(rat) = __I_.S_itlﬂl‘_/)i[L/(t),Ll(t)) v 0
L% 4me, ¢*R(L o) v l—!cose(L/)
c

(45a)
Using the far-field approximation, i.e., letting L'(H)<<r, 0=a,

and R(L')~r, we can express the “turn-on” field as

E@r,a.f = (45b)

. /

1 s“;ai(L’(t),L (t)) v a
ane, otr v/ 1-2eosa
c

Note that in the expression for the "turn-on" field, Uman and
McLain [1970a] did not include the factor [1 -(v/c)cos a]!
appearing in (45b), an oversight that was later corrected by
Rubinstein and Uman [1990]. The factor [1-(w/c) cos a]" in
(45b) appears as a "correction” to the return-stroke discharge
front speed v and is applicable to any return-stroke model with
a current discontinuity at the wavefront. The F factor associated
with the current discontinuity at the return-stroke front derived
here for any return-sttoke model and for a traveling step
function in the work of Rubinstein and Uman [1990, 1991] is
the same as the F factor obtained for the upward propagating
continuous ctrrent wave in the TL model, because all these
radiation sources move in the same manner with respect to the
observer on ground (upward at speed v). On the other hand, the
F factor associated with the channel current behind the
discharge front is different for the TL and TCS models, because
the radiation sources move at different speeds and in different
directions: upward at speed v in the TL model and downward at
speed ¢ in the TCS model, as illustrated in Figures 1 and 2 of
Rakov [1997].

4.4. Far-Distance Radiation Field/Current Relations Taking
Into Account Current Discontinuity
at the Discharge Front

4.4.1. TL model. The current at the return-stroke front for
the TL model is i(L'(),L'(£)/v) = i(0,0). Therefore if the current
at ground starts from zero at ¢ =0, i(0,0) =0, and hence there is
no current discontinuity at the propagating discharge front. If
the current at the ground starts from a nonzero value at /=0, the
current will have the same nonzero value at the propagating
front. The "turn-on" far radiation field is obtained from (45b)
as

1 sind v
Ane, %

E(r,00) = i(0,0) &, (46)

v
1-—cost
[+

which is equal in magnitude and opposite in sign to the term
containing i(0,0) in (38). Adding (38) and (46), we get
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1 sina v
AmE; cr 1-

E(r,of) = 0,6 -rlc)6  (47)

v
—cos 0
[

which is the total radiation (subscript “” used in (38) is dropped
here) electric field far from the chanmel for the TL model,
whether or not there is a current discontinuity at the discharge
front.

For the special case of an observer at ground far from the
channel, a=90°, & = - #(see Figure 1), and r = D, equation (47)
in a Cartesian coordinate system becomes the same as equation
(10b), the relation used (with the right-hand side multiplied by
2 to account for the effects of the ground) by Uman et al. [1973]
for the calculation of the far electric radiation fields at ground
level from return strokes assurmed to obey the TL model.

4.4.2. TCS model. The current at the return-stroke front for
the TCS model is i(L'(f),L' ¢)/v) = i(0,L'((Yw+L'(¢)/c). Therefore
unlike the TL model, even if the current at ground starts from
zero, the current at the return-stroke front above ground will
have a non-zero value. The "turn-on" far radiation field is
obtained from (45b) as

Fraf = 3% ¥ foriat+Dyla @)
A€, c’r 1 _Yeosa v.¢
[

The total radiation electric field for the TCS model is obtained
by summing (42) and (48), which yields

1 sinal.’ c {

Er,(x,t =
(.0 ame, 2 |1+cosal

iO.L (O + 1)) ~i(0 - i))
(o4 v [

v )
- 1

(o,L ’(t)(%%)) &

+

1- Y cosa
c
49

For the special case of an observer at ground, 0=90°, equation
(49) in a Cartesian coordinate system becomes

Er) = —— i-{o,L’(t)(l+l))
4T€, Cr c v

~i(0,6-T)+ 1{ 0.L (> + l)) ]f
(o4 c c v

0

(50)
where 7 is an upward directed unit vector.
Noting that for a=90°, L'(f)<<r, L'(f)=L(t)=v(¢-r/c), and
defining
\4

k=1+—
c

(51)
we can rewrite equation (50) as

= __ 11 _ e R
E(r,p) = e o [ki(0,k(t —ric)) ~i(0,t ~ric)1Z  (52)

0

which is similar to the expression obtained by Heidler [1986]
for the far radiation field at ground level from return strokes
assumed to obey the TCS model. If we additionally wish to
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include the effect of perfectly conducting ground plane, we must
multiply the right-hand side of (52) by 2.

5. Discussion and Summary

We have shown that in calculating the electromagnetic fields
from lightning return strokes, the F factor arises as a
manifestation of retardation effects because the distance R from
the observer to each source point changes as the source moves
with respect to observer. The F factor becomes significant in
calculations only when the speed v is a significant fraction of
the speed of light c. The F factor can appear explicitly as a
multiplier (1) in the approximate expression for the retarded
length of the channel when the observer is very far away (or
when the length of channel is vanishingly small), (2) in the
expression for the apparent speed of the propagating discharge
front, and (3) in the expression for the apparent speed of the
traveling waves in the channel (or in the expression relating the
time derivative of the traveling current wave and its spatial
derivative).  Situations 1 and 2 are applicable to any
return-stroke model, while situation 3 is applicable only to
return-stroke models that involve a traveling wave such as the
transmission line (TL) and the traveling current source (TCS)
models (the F factor expression (41) for the TCS model can be
obtained if we substitute v = -c in the F-factor expression (36)
for the TL model). The presence of the F factor in the

- expressions for the Lienard-Wiechert (LW) potentials of a
charge in uniform motion at relativistic speeds and the fact that
return-stroke discharge front is moving at relativistic speeds
(typically one third of c), as well as work of Rubinstein and
Uman [1990] and LeVine and Willett [1992] on the F factor for
specific models, has led some authors to erroneously believe
that general field expressions similar to (7) and (8) above
require corrections involving the F factor (e.g., the first
paragraph of Krider [1992] and Kumar et al. [1995]). The
vertical and horizontal electric field integral expressions (3) and
(4) of Kumar et al. [1995] contain multipliers [1 - (v/c) cos 0]*
for the current integral (static) terms, [1 - (v/c) cos 0] for the
current (induction) terms, and [1 - (v/c) cos 8] for the current
derivative (radiation) terms. Kumar et al. [1995] do not show
the details of their mathematical derivation; however, they have
used the F-factor-corrected vector potential (LW vector
potential) for an elemental length of the channel dz’, and this
may be the source of the additional multipliers %, F'2, and F*!
in their general field equation (3) and (4). In section 3 of this
paper we have shown why the derivation of general integral
equations (7) and (8) does not require explicit application of the
F factor and have also shown various situation in which the F/
factor does arise. The structure of equations (3) and (4) of
Kumar et al. [1995] is similar to that of the general field
expression (7) of this paper, and it appears that equations (3)
and (4) of Kumar et al. [1995] are incorrect on account of the
multipliers F, F2, and F. Therefore the calculated electric
fields at various altitudes and ranges, that Kumar et al. [1995]
present in their Figures 2, 3, 4, and 5, are likely in error. The
general expressions (7) and (8) do not need corrections
involving the F factor even when the speed of the return stroke
is a significant fraction of the speed of light. Equations (7) and
(8) can be used to find the electric and magnetic fields in free
space at any position with respect to the lightning return stroke,
with proper account taken of the effects of the ground.
Lightning return stroke field calculations using the general
expressions (7) and (8) applied to specific return-stroke models
and observer at ground are presented, for example, by Rakov
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and Dulzon [1987, 1991), Diendorfer and Uman [1990], Nucci
et al. [1990), Thottappillil et al. [1991], and Thottappillil and
Uman [1993, 1994].

It is shown in the Appendix that the implicit
"angle-dependent” element (inherent in the time delays) of the
radiation field expressions of LeVine and Willett [1992] for the
TL model is due to the fixed length of the current-carrying line.
For the case of the TL model, the radiation field from an
extending discharge does not have any implicit angle
dependency as opposed to the radiation field from the channel
of fixed length discussed by LeVine and Willett [1992] and in
the Appendix.

Appendix

In this appendix we discuss some important differences and
similarities of equation (38) of this study and equation (9a) of
LeVine and Willett [1992] reproduced as (Al) below, both
equations representing the electric radiation field very far from
the lightning channel for the transmission line (TL) model.
According to LeVine and Willett [1992],

1 sin® v
4me, 2R

E(r) = - ‘Ut -t) -1 -1)10 (A1)

v
o 1-—cos0
c

where R, is the distance from the center of a line segment of
length L to the field point, and 0 is the angle between the
direction of propagation and the line connecting the midpoint of
the segment and the field point. In (A1), ¢, and #, represent the
times at which the current I reaches the end points a and b,
respectively, of the segment plus the time required for the
radiation to propagate from the corresponding end point to the
observer. Equation (Al) contains the factor [1-(w/c)cosO]!
explicitly as a multiplier, similar to that in (38). In addition,
equation (A1) contains the factor [1-(/c)cosB]" implicitly in the
time delays #,=Ry/c-(L/2v)[1-(v/c)cosB] and £,=Ry/c+(L/2v)
[1-(W/c)cos], given by equations (10a) and (10b), respectively,
of LeVine and Willett [1992], whereas the time delays r/c and
0 in equation (38) of this paper do not contain such a factor.
The reason for the above difference is the following. Equation
(9a) of LeVine and Willett [1992] gives the radiation field of a
channel of fixed length stationary in space which is traversed by
a propagating current wave, whereas equation (38) gives the
radiation field of a channel whose length is being extended by
the propagating discharge front. We can see that if the upper
limit of the integral in equation (38) is changed from L'(f) to L,
a constant length, R(L) in the expression (0,L/~” - R(L)/c) is
expanded in a power series, and only the first-order terms of L/r
are taken, as done by LeVine and Willett [1992], we get an
angle-dependent term in one of the time delays, r/c+(L/)
[1-(v/c)cos a], as given in (A2) below.

E(rap=-—S¢__ ¥ i[o,t--’-—ﬁ(l—icosa))
4n€° c’r l——‘icosa ¢ v ¢
c
—i(o,t—-'-)}a
[+

(A2)

It is worth noting that the time reference used in the present
paper (the source is at z=0 at t=0) is different from that adopted
by LeVine and Willett [1992] who assumed that at =0, the
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source is at the center of the line segment, as seen in their Figure
1b. The remaining apparent difference between (A1), LeVine
and Willett’s equation, and (A2) is due to this difference in time
origins.
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