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A new lightning return stroke model based on antenna theory

Rouzbeh Moini,' Behzad Kordi,>! Gholamreza Z. Rafi,>! and Vladimir A. Rakov*

Abstract. A new approach based on antenna theory is presented to describe the lightning return-
stroke process. The lightning channel is approximated by a straight and vertical monopole antenna
with distributed resistance (a so-called lossy antenna) above a perfectly conducting ground. The
antenna is fed at its lower end by a voltage source such that the antenna input current, which
represents the lightning return-stroke current at the lightning channel base, can be specified. An
electric field integral equation (EFIE) in the time domain is employed to describe the
electromagnetic behavior of this lossy monopole antenna. The numerical solution of EFIE by the
method of moments (MOM) provides the time-space distribution of the current and line charge
density along the antenna. This new antenna-theory (or electromagnetic) model with specified
current at the channel base requires only two adjustable parameters: the return-stroke propagation
speed for a nonresistive channel and the channel resistance per unit length, each assumed to be
constant (independent of time and height). The new model is compared to four of the most
commonly used “engineering” return-stroke models in terms of the temporal-spatial distribution of
channel current, the line charge density distribution, and the predicted electromagnetic fields at
different distances. A reasonably good agreement is found with the modified transmission line
model with linear current decay with height (MTLL) and with the Diendorfer-Uman (DU) model.

1. Introduction

The expression “lightning return-stroke model” is generally
used to describe a specification of the time- and height-dependent
current in the return-stroke channel to make possible the
calculation of resultant remote electromagnetic fields [Rakov and
Uman, 1998]. Most of the retum-stroke models specify an
analytical relation between the current at each point of the channel
and the channel-base (ground level) current. Such an analytical
relation also describes the propagation of the current wave along
the channel. A suitable model should be characterized by a
minimum number of adjustable parameters and be consistent with
the measured characteristics of the return stroke, including (1)
current at the base of the channel, (2) variation of light intensity
with height, (3) upward propagation speed of the luminosity front,
and (4) electromagnetic fields at various distances from the
channel.

A discussion and comparison of the most common return-
stroke models is found in the works of Nucci et al. [1990],
Thottappillil and Uman [1993], Thottappillil et al. [1997], and
Rakov and Uman [1998]. In this paper a new model of the
lightning return stroke, an antenna-theory (AT) model, is
presented and compared to the transmission line model (TL), the
modified transmission line model with linear current decay with
height (MTLL), the modified transmission line model with
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exponential current decay with height (MTLE), and the
Diendorfer-Uman model (DU).

In the TL model the current injected at the channel base
propagates upward without either distortion or attenuation as it
would on a lossless transmission line but at the speed arbitrarily
set at a value lower than the speed of light [e.g., Uman and
MecLain, 1969]. The channel is assumed to be initially uncharged,
and the charge density along the channel becomes everywhere
zero after the wave has traversed the channel. Because of this
feature of the model, the fields calculated using the TL model are
not consistent with measurements at later times and closer ranges
[Nucci et al., 1990; Thottappiliil et al., 1997].

In the MTLL model the current wave suffers no distortion but
its amplitude decays linearty with height [e.g., Rakov and Dulzon,
1987]. The MTLE model is similar, but the current amplitude
decays exponentially with height [e.g., Nucci et al., 1990]. The
final line charge density in the MTLL model is assumed to be the
same at all heights, while in the MTLE model, it rapidly decreases
with increasing height. Because of the charge density distribution
in the MTLE model being unrealistically skewed toward the
bottom of the channel, this model is not able to predict adequately
the very close electric field [e.g., Thottappillil et al., 1997). In the
case of MTLL model, the calculated fields are consistent with the
measurements at all ranges [e.g., Rakov and Dulzon, 1991,
Thottappillil et al., 1997]. In the modified transmission line
models (MTLL and MTLE), the current attenuation is specified
arbitrarily while the shape of current waveform remains the same;
that is, there is no dispersion. :

The DU model and its modifications consider the channel
current as the sum of two components, one due to a fast discharge
of the leader channel core and the other due to a slower discharge
of the corona sheath surrounding the chamnel core [e.g.,
Diendorfer and Uman, 1990]. These current components are
assumed to be generated at the upward moving return-stroke front
and to propagate downward. In the DU model, the distribution of
line charge density along the channel during the return-stroke
process is influenced by the inherent assumption that the current
reflection coefficient at ground is equal to zero [e.g., Thottappillil
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Table 1. Mathematical Descriptions of Four “Engineering”
Models and Values of Their Parameters Used in This Paper

Model Mathematical Description for Current
@0 i0,t-2"/v)y zZ'swt
i(z',0) =
TL 0 z' > vt
v=13x108m/s
MTLL iZ.h) = a- )I(OI—z /vy 2'<wu
0 z' >t
v=13x10*m/s H=7km
- MOt -z"Iv) v
MTLE i(z'.1) ={ ¢ ) ,
0 z'>wvt
v=13x10m/s,A =2 km
. 0,0 +2'6) —i(0,2 W+ 2'fe)e ="M a pcyy
DU I(z',t)={ ¢ )~ )
0 z' > vt

v=13x10"m/s, c=3x10¥ m/s

T4 = 0.6'ps

*Only one discharge time constant is used, which is sufficient for
computing fields during the first 5-10 us [Diendorfer and Uman, 1990].
Note that Thottappillil and Uman [1993] and Thottappillil et al. {1997]
also used a single discharge time constant 14, but its value was 0.1 us.

et al., 1997]. The DU model provides a reasonably good match
between the model-predicted and measured electromagnetic fields
and it introduces current dispersion (change of the shape of
current waveform as it propagates along the channel), but the
specification of the dispersion is arbitrary. The waveshape
characteristics of the remote fields predicted by the DU model are
very sensitive to variations in the shape of the channel-base
current [e.g., Thottappillil et al., 1991].

For a straight channel oriented along the z axis, the expressions
for current distribution along the channel predicted by TL, MTLL,
MTLE, and DU models are summarized in Table 1. Once the
spatial-temporal distribution of the channel current is determined,
the remote electric and magnetic fields can be easily calculated
[e.g., Rakov and Uman, 1998].

In this paper a new model, based on antenna theory, i.e., on a
complete solution of Maxwell’s equations, is presented and used
to obtain the channel current and charge density profiles.
According to the classification of return-stroke models proposed
by Rakov and Uman [1998], the antenna-theory (AT) model
belongs to the class of electromagnetic models. In the AT model,
the lightning return-stroke channel is represented by a vertical,
lossy monopole antenna above a perfectly conducting ground. The
antenna is fed at its lower end by a source whose voltage is
determined using the assumed antenna input current waveform
and the resistance of antenna per unit length, as described in the
Appendix. The source launches a current wave along the antenna,
which radiates electromagnetic fields into a nonconducting
medium whose electrical permittivity is selected such that the
wave propagates at a specified speed (lower than the speed of
light). The artificial change of permittivity is used to account for
the effect of corona on the wave propagation speed. The
distribution of current along the antenna is determined applying
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the boundary condition for the tangential component of electric
field on the surface of the antenna. The solution is found
numerically, using the method of moments, with ohmic losses in
the antenna being taken into account by introducing the resistive
loading (series resistance per unit length). Nonlinear effects
associated with the dependences of the shunt capacitance of the
lightning channel on its electric potential and of the series
resistance on longitudinal lightning current are neglected. The
resultant distribution of current along the antenna is allowed to
radiate into free space.

In the AT model, only two adjustable parameters are needed,
the propagation speed of the current wave for a nonresistive
channel and the resistance per unit channel length. The evolution
of the current and charge along the channel is described by
Maxwell’s equations.

2. General Theoretical Approach

The starting point of the analysis is the time domain Maxwell's
equations for a linear, homogenous, and time invariant medium,

VXE:-uZ—I;I

VxH= J+e£
o’

(D
v-E=2,

€
V-H=0,

where € and p are the electric permittivity and magnetic
permeability of medium, E and H are the electric and magnetic
field intensities, and J and p are the volume current and charge
densities, respectively. The relation between J and p is specified
by the current continuity equation

op
V.J=- 2
e @
Combining Maxwell’s equations yields the following
expressions (wave equations):
82
V3K(r, t)——— E( )= u—-(r Y+— Vp(r 1),
€

) 1 &
\Y H(r,t)—c—zaTH(r,t)=—-VxJ(r,t),

where r is the position vector of a point in space. If we
consider a perfectly conducting antenna (later we will introduce
resistive loading) in a homogenous medium, the volume current
and charge densities, J and p, can be replaced by the surface
current and charge densities, Js and ps,

I(r.1)=J(rp,1)3,(r-rp) ,
p(rat) = ps(r09t)5's(r_r0) 3

in which r, is the position vector of a point on the surface of the
antenna, and 3 is the two-dimensional impulse function

Q)

5.( ' ) o if r= )
r-ry=
sV 0 otherwise.
The Green’s solution (G) of a nonhomogeneous wave equation
1 8°G
V3G - == -8(r—1y)8(t - 5
7 52 (r-ro)d(t=1y), 3
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where
S(r—ry)=8(x—x,)8(y - ¥6)8(z-2¢)

is given by Stratton [1941]:

A

o z (6)

G(r,ro,t—ty) =
In this equation, R = ir - l’ol : 1y is the spatial location, and 4 is
the initial temporal point of the source (current or charge density
on the surface of the conductor).
Applying the above solution to equations (3), we obtain the
radiated fields produced by surface current density Js [Reinex,
19861,

aJ, 1
E(r,r)=—£j [u—aT(ro,n;)G(r,ro,r)+;jov-Js(ro,ﬂdr
0

(’:‘)VOG(r,rO,t)} dsg, @)

H(r.)= [ Js(ro,r)(f)voc(r,ro,t)dso .

Sy

The subscript (t) refers to convolution operator variable (time),
and the subscript zero is related to the differentiation variable (ro).

The symbol (’; denotes the cross product with respect to space

and convolution in time, and integration is performed over the
outer surface of the antenna (So).

The response of a monopole antenna (see Figure 1) above a
perfectly conducting ground to an electromagnetic wave produced
by an external source can be found considering the scattering of
electromagnetic fields by a metallic object. The boundary
condition on the surface of a perfect conductor can be expressed
as

nx(E*+E)=0, 8
monopole K
antenna
Ei
AN~ )
. ; ,
. E
incident reflected
wave N X wave
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Figure 1. Geometry of vertical monopole antenna in receiving
mode located above a perfectly conducting ground. In transmitting
mode, the excitation field is nonzero only at the base of the
antenna. See text for details.
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where E* is the applied field, and n is the normal vector to the
surface of conducting object. For a nonideal conductor, the right-
hand side of equation (8) is not equal to zero and depends on
resistance per unit length. Combining (7) and (8), we have

nxE*(r,f)=nx Vpﬂ [u ag; (ro,t)(’:‘)G(r,rO,t)
So

1 ¢t
+—1 V- J (r,,7)dt * V,G(r,r,,t) |ds,.
8".0 +(Fo,7) o 0G( o)i' 0 )
In equation (9), Vp is the principal value of the integral operator
[Bouix, 1964]. In the case of homogenous, linear, and time-
invariant media, inserting equation (6) into (9) will yield the
following equation:

n p ol
nx E*(r,f)=—xV, (1t
(r.n=o pg[Ra,(o)
R
+——=V I (r,,t —Rfc
8CR2 (0 /)

R ¢
+§3-IOV-JS(FO,T)dT ds(,, (10)
where R=r - ro.

We will use the thin-wire approximation [Miller et al., 1973]
according to which the current /(s,f) on a wire structure of radius a
satisfies the equations,

I(s5,t)=2maJ(s,t),
I(s,0)
2na

(1)

I(s,0)= s,
where s is the location of a point on the wire structure and s is the
corresponding tangential unit vector (see Figure 1).

Because of the presence of ground the total excitation (or
applied) field produced by the source above ground is

E'=E +E", (12)
where E!is the incident field and E" is the reflected field from the
ground. The excitation field E®induces current / (s, #) at each
point of the antenna. According to equation (10) and thin-wire
approximation (11), this current will produce the scattered field E,
which can be described in the following form:

E(s,))=L[I(s,0], (13)

where L is an integrodifferential operator [Herault et al., 1990].
Note that E* is independent of the presence of the antenna, and E
can be viewed as a reaction of the antenna to E". For the
receiving antenna mode, illustrated in Figure 1, E*is produced by
an external source and exists everywhere in space. For the
transmitting antenna mode, E®is produced by a lumped source
connected between the lower end of the antenna and the ground
and is zero everywhere except for the position of the source.
Similar to the receiving mode, E®is totally independent of the
presence of antenna. The source, whose voltage is related to E*
as described later in this section, launches a current wave along
the antenna. Electric field produced by this current wave is
scattered field E which, similar to the receiving mode, can be
viewed as a reaction of the antenna to E®.

The continuity of tangential component of the total electric
field at any point on the antenna surface requires that

s-(E* (s, )+ L{I(s,1)]) =0, (14)
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which is the same as equation (8). As stated above for equation
(8), for a nonideal conductor the right-hand side of equation (14)
is not equal to zero. Using the definition of the L operator and the
thin-wire approximation [Herault et al., 1990; Moini et al., 1998],
we can write

s-E*(s,1) = j [s 889 1y t)+vR———I(s 1)

R o

v Rjo (2 16:949)

*

s R —a—,l(s’,t")
os

1( ) - ve

2 S'R t'*i ' )
- = -‘o as’l(s ,r)d‘r}ds,

(15)

where

R=(s-s¢' 2ra),

R =(|s—s'

2

*

+a)V?,

1
. €oHo ’
R*

t'=t—£,t"=t——.
v v

C, is the path along which the current is flowing, a is the radius of
the antenna (Figure 1), and v is the wave propagation speed for
the case of nonresistive channel. As explained later, we assume
thatV=C/ J; , where & = &/go is the assumed relative electric
permittivity; the actual value of the propagation speed is slightly
reduced with respect to v due to ohmic losses in the antenna.
Further, s and s' are the observation and source points on the
antenna, respectively, s” is the image of the source point s, and s,
§', and s" are the corresponding unit tangential vectors. The last
three terms in the right-hand side of equation (15) represent the
effect of perfect ground. The lefi-hand side of equation (15)
represents the applied (excitation) electric field, tangential to the
surface of the antenna. For the case of transmitting antenna, the
applied field E*(s,?) is produced by a voltage source (not shown
in Figure 1 which illustrates the receiving antenna mode). The

12

10

Current (kA)
N

0 I L 1 1 1
0 10 20 30 40 50 60

Time (us)

Figure 2. Channel-base current waveform used for the compar-
ison of different models in this paper. The peak current is about
11 kA, and peak current rate of rise is about 105 kA/us. Adapted
from Nucci et al. [1990].
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relation between E°(s,f)and source voltage v(s,f) according to
Herault et al. [1990] is

. {-Vv(s',t) ifs=s'=0
E’(s,t) =
0 elsewhere. (16)
The numerical solution of equation (15), the electric field
integral equation (EFIE), by the method of moments (MOM) in
the time domain [Miller et al., 1973] yields the time-space
distribution of current along the antenna. In using the method of
moments, a set of rectangular basis functions is defined for
expressing the unknown current in each of the segments of the
antenna, and a second-order polynomial representation is used to
evaluate the current. The last step of the method of moments is
choosing the test functions in order to get a system of linear
equations. The point-matching method based on Dirac
distributions [Herauit et al., 1990] is utilized.

3. Antenna Theory (AT) Model

In this model, the return-stroke channel is considered as a lossy
vertical antenna fed by a voltage source at its lower end, while for
“engineering” models, the input to the model is a current
waveform at the base of the channel. In order to compare
“engineering” models with the AT model quantitatively, we need
to use the same input current in all the models. This means that the
voltage source for the monopole antenna should produce the same
current as the channel-base current assumed in the “engineering”
models. The voltage of the source is given by the following
equation:

W) =F'[2(/)-10./)], a7
where (0, f)is the Fourier transform of the specified channel-
base current, Z( ) is the input impedance of the lossy monopole
antenna, and F' denotes the inverse Fourier transform. The input
impedance of the monopole antenna, which is a function of its
length and distributed resistance, is calculated applying the
method of moments (MOM) to the electric field integral equation
(EFIE). The details of evaluation of the voltage source waveform
are described in the Appendix. Once the voltage v(f) of the
source is determined, the corresponding applied electric field E®,
to be substituted in equation (15), is estimated as the ratio of this
voltage and the length Az of the excitation (source) segment of the
antenna.

To reduce the propagation speed of the current wave %n the AT
model to a value consistent with observations, v < 3x10 m/s, we
use € > g in calculating the current variation along the channel,
and then use that current distribution to calculate the
electromagnetic fields radiated by the antenna in free space (g =
€). The arbitrary increasing of ¢ in determining the channel
current distribution serves to account for the fact that channel
charge is predominantly stored in the radial corona sheath whose
radius is much larger than that of the channel core whlch carries
the longitudinal channel current, resulting in v < 3x10° m/s. This
simulates an increase of shunt capacitance per unit antenna length
due to corona. The use of & > &, additionally introduces the effect
of radiation into the fictitious medium, but the resultant current
distribution along the channel is unlikely to differ significantly
from the case of no such effect (the transmission line current is
expected to dwarf the antenna current). An altemative approach to
modeling corona effect on propagation speed would be to
introduce capacitive antenna loading. ohmic losses in the antenna
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Figure 3. Channel current as a function of time at different heights above ground as predicted by (a) the TL model,
(b) the MTLL model, (c) the MTLE model, (d) the DU model, and (¢) the AT model. For the AT model it is assumed

that €= 5.3 and R = 0.07 {Y/m.

further reduce v, but for the selected value of resistance per unit
length (see below), this additional reduction in v is expected to be
relatively small. In the AT model, there are only two parameters
to be adjusted, the propagation speed v for the case of
nonresistive antenna and the value of distributed resistance R (not
to be confused with distance R in equation (6)). The value of
resistance per unit length was selected (by trial and error) to
provide an agreement between model-predicted and measured
electric fields at close distances. It was assumed for tl};e AT model
that R = 0.07 Q/m (see Appendix) and that v =1.3x10" m/s, which
corresponds to & = 5.3. As stated above, the spatial and temporal
distribution of current along the antenna was determined solving
the EFIE, equation (15), using MOM. The computation time on a
Pentium computer with 128 MB RAM is about 5 min.

4. Comparison of Models

In the following, we compare the AT model with other models
in terms of (1) spatial and temporal current distribution, (2) line
charge density distribution, and (3) remote electromagnetic fields.
In doing so, we assume the same lightning channel-base current
waveform as that used by Nucci et. al. [1990], Rakov and Dulzon
[1991], and Thottappillil et. al. [1997). This waveform is depicted
in Figure 2.

4.1. Current Distribution

Current waveforms as a function of time at different heights
along the channel for five models, the TL, MTLL, MTLE, DU,
and AT models, are compared in Figure 3. For the TL model the
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Figure 4. (a) Current peak as a function of height predicted by
the TL, MTLL, MTLE, DU, and AT models. (b) Current risetime
to peak as a function of height predicted by the TL, MTLL,
MTLE, DU, and AT models.

current waveforms at different heights are the same, and for the
MTLL and MTLE models, the current amplitude decreases with
height, while the waveshape remains the same. For the DU model
both attenuation and dispersion of current waveform are observed.
The current peak and current risetime each as a function of height
for the five models are shown in Figure 4. For the TL model,
neither current peak nor current risetime changes with height. The
MTLL and MTLE models are characterized by linear and
exponential decrease of the current peak with height, respectively,
while the current risetime remains the same at all heights. For the
AT model, the variation of current peak with height within the

210
t=

180 80ps
150 F

120

Charge Density (+ C/m)

Height (km)

Figure 5. Line charge density distribution along the channel
calculated for different models att = 60 ps.
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lowest 4 km or so of the channel is similar to that for the MTLL
model. Both the DU and the AT models are characterized by the
increase of current risetime with height, but for the DU model, the
pronounced increase occurs only within the lowest 1 km or so of
the channel. Note that for the AT model the current peak
decreases with height due to both ohmic losses in the antenna and
radiation losses; that is, a decrease of current peak with increasing
height would be observed even if the ohmic losses were
neglected.

4.2. Line Charge Density Distribution

The line charge density at any height z' on a straight vertical
lightning channel at any time ¢ is given by [Thottappillil et al.,
1997]

i(z',2' /v) _It di(z',1) p
2'/v ’

pw (18)

pL(Z'at) =

4500
4000
3500 -

2500 -
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0 10 20 30 40 50 60
Time (us) (b)

2.00

1.50

1.00

0.50

Electric Field (V/m)

0.00

_0.50 L 11 i i 1

Time (us) (©
Figure 6. Vertical component of electric field calculated at

different distances (r) from the channel: (a) r = 500 m, (b)r = 5
‘km, (c)r = 100 km.
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Figure 7. Horizontal component of magnetic field calculated at
different distances (r) from the channel: (a)r = 500 m, (b)r = §
km, (c)r = 100 km.

The first term of (18) represents only the deposited charge density
component, while the second term can contribute to both
transferred and deposited charge density components, the two
components being defined by Thottappillil et al. [1997]. Applying
the Leibnitz formula to (18), we obtain

’ d ! H ’
p (1) = —5le1(z ,0)dt . (19)

Equation (19) has been applied to five return-stroke models,
and the resultant charge density profiles at t = 60 ps are shown in
Figure 5. For the TL model there is no deposited charge, and the
total charge density is equal to transferred charge density which
becomes equal to zero when the current ceases to flow in all
channel sections of interest [Thottappillil et al., 1997]. For the
other four models, the total charge density at 60 ps is a
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combination of transferred and deposited charge density
components. When the current ceases to flow everywhere in the
channel, the transferred charge density component becomes zero
and the total charge density becomes equal to the deposited
charge density component. As seen in Figure 5, the MTLE model
has a total charge density near ground 2 to 3 times higher than that
predicted by the AT, MTLL, and DU models. This disparity
translates into an appreciable difference in the model-predicted

return stroke electric fields at close ranges, as shown in section
43.

4.3. Remote Electromagnetic Fields

Figures 6 through 9 illustrate the calculated electric and
magnetic fields at various distances from the channel, displayed
on two different timescales. The fields were computed using
traditional equations found, for example, in the work of Rakov
and Uman [1998]. Due to computer memory limitation, the
calculations were performed only up to 60 ps, and for the AT
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Figure 8. Same as Figure 6, but on an expanded timescale.
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Figure 9. Same as Figure 7, but on an expanded timescale.

model the channel segment length Az was 15 m. The calculated
fields can be compared with typical measured ones shown in
Figure 10. Except for the TL and MTLE models, the 500 m
electric field waveforms predicted by all the models are more or
less consistent with experimental data. In particular, the electric
fields predicted by the MTLL, DU, and AT models show little
variation after 10 ps or so, following the initial relatively rapid
change, in keeping with observations. At 5 km the electric field
exhibits a ramp after the initial peak for all the models, except for
the TL model [see also Nucci et. al. 1990]. In fact, at distances of
the order of some kilometers, the TL model allows the
reproduction of only the first few tens of microseconds of the
characteristic electric field ramp observed in the experimental data
to last for more than a hundred of microseconds. Note that at
distances greater than a few kilometers the initial rapid transition
in electric field is reasonably reproduced by all the models,
because (1) this feature is formed when the current wave is very
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Figure 10. Typical measured vertical electric and horizontal
magnetic fields at various distances from the channel. Adapted
from Lin et al. [1979].

close to the ground and (2) the same current waveform at ground
level is assumed for all models. In contrast with the other models,
the DU model predicts a nonmonotonic rise to the initial peak (a
spike within the first some hundreds of nanoseconds), as seen in

2.00
. 160
&
2 120 |
=
[
& 080 [
g
g2 040
2
m yy
0.00 ~,
040 . ! ‘ .
0 30 60 %0 120 150
Time (us) (a)
1.00
0.80 |
~~
&
2 060
=
D -
£ 040
‘U
B o}
2
53] M
0.00 "w
_0 20 1 L i 1
o 30 60 ) 120 150

Time (us) ®)
Figure 11. Measured electric field waveforms due to lightning
discharges at distances of about 250 km in Florida. Note that one
of the waveforms (a) shows a zero crossing, while the other one
(b) does not. See text for details.
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Figures 8 and 9. At far distances from the channel base, e.g.,
=100 km, all the models predict more or less similar field peak
values. On the other hand, the MTLL and MTLE models predict a
zero crossing after a few tens of microseconds, a feature generally
considered to be characteristic of distant fields [Lin et al., 1979],
while the TL, DU, and AT models do not do so. In summary, it
appears that the TL model is not a realistic model for calculating
lightning electric fields at times greater than some tens of
microseconds at distances of the order of some kilometers (see
also Nucci et al. [1990]) and after only a few microseconds at
distances of the order of tens of meters from the channel (see
Thottappillil et al. [1997]). The MTLL-model-predicted fields are
consistent with observed fields at all ranges. The MTLE model is
incapable of reproducing adequately the observed electric field
waveforms at very close (tens to hundreds of meters) ranges (see
also Thottappillil et al. [1997]). The DU and AT models do not
reproduce the zero crossing at far ranges. However, this latter
feature depends on the assumed channel-base current waveform
(see also Thottappillil et al. [1991]), in particular, on the rate of
decrease of current after the peak and on channel geometry.
Indeed, the field zero crossing occurs when the contribution from
the leading positive and trailing negative portions of the spatial
current derivative wave become equal in magnitude, the time of
this event being a function of channel inclination with respect to
the observer. As an example, we present in Figure 11 electric field
waveforms measured at distances of about 250 km in Florida, one
of which showing and the other not showing zero crossing within
100 ps of the initial peak. Note that the two waveforms were
apparently produced in the same thunderstorm within less than 3
min of each other.

5. Summary

A new antenna theory (AT) model for the lightning return
stroke is introduced. In this model, the lightning channel is
represented by a lossy vertical monopole antenna, which is fed at
its lower end by a voltage source. The voltage waveform is
specified on the basis of the assumed input current of the antenna
and antenna resistance per unit length. There are only two
adjustable parameters in this model: the wave propagation speed
for a nonresistive channel and the value of the distributed channel
resistance. Once these two parameters are specified, the spatial
and temporal distribution of the current along the channel is found
by solving the electric field integral equation (derived from
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Figure Al. Normalized modulated Gaussian waveform in the

time domain which has been used as a source voltage to calculate
the input impedance of the monopole antenna.
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Figure A2. Normalized amplitude of the modulated Gaussian

waveform in the frequency domain corresponding to the time
domain waveform shown in Figure Al.

Maxwell’s equations in the time domain), using the method of
moments. The AT model was compared with other retum-stroke
models in terms of current and line charge density distributions
along the channel, and the predicted remote electromagnetic
fields. The primary features of the antenna theory model are as
follows: (1) the current amplitude decreases and current risetime
increases as the current wave propagates along the channel, in
agreement with optical observations, (2) the current wave
propagates along the channel at a speed lower than the speed of
light due to both the effect of corona and ohmic losses in the
channel, and (3) the model-predicted electric and magnetic fields
are reasonably consistent with typical measured fields. The AT
model can easily be extended to include arbitrary channel
geometry, strike object, and the electromagnetic coupling between
the return-stroke channel and any wire structure located in the
vicinity of the channel (e.g., power or communication line).

Appendix

The voltage v(¢), exciting the monopole antenna, which
results in the specified channel-base current, is evaluated using the
following equation:

() = F[Z(N)-100.1)].

In this equation, Z(f)is the input impedance of the monopole
antenna in the frequency domain, and /(0,f)is the Fourier
transform of the channel-base current. To find the input
impedance of the monopole antenna, a modulated Gaussian
waveform, shown in Figure Al, was used. Figure A2 depicts this
waveform in frequency domain. Using equation (16) and solving
the electric field integral equation (equation (15)) by the method
of moments, which allowed to include resistive loading, we
obtained the input current of the monopole antenna corresponding
to the modulated Gaussian voltage waveform. The input
impedance of the antenna is then found by dividing the input
voltage by the input current in the frequency domain. Figure A3
shows the source voltage, found using the computed input
impedance and specified current at the channel base, for different
values of resistance R per unit length. The waveform of the source
voltage is almost independent of R during the first tenths of
microseconds. The value of R = 0.07 {¥/m has been selected for
the calculations presented in this paper, since this value provides
the best agreement between model-predicted and observed
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Figure A3. Calculated source voltage waveforms corresponding
the channel-base current shown in Figure 2 for different values of
the resistance per unit channel length. These waveforms are
similar in their shapes to corresponding model-predicted electric
field waveforms at some tens of meters from the lightning channel:
(a) 60 us timescale, (b) 5 ps timescale.

electric field waveforms at close (tens of meters) ranges.
Interestingly, Rakov [1998] estimated the resistance per unit
channel length to be 0.035 €/m behind the return-stroke front.
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