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Abdract: A cloud-to-ground lightning return-stroke 
channel is usually modeled as an extending line with one 
end fixed at ground. Return-stroke models describe how 
the current is varying with time along the line. The 
expressions for electric and magnetic fields due to retarded 
currents on a stationary straight wire antenna of fixed 
length have been derived in time domain previously (e.g., 
[l]). These general integral expressions can be used in 
lightning field calculations with suitable modifications to 
take into account retarded channel length and possible 
current discontinuity at the discharge front. The radiation 
fields far from the channel are generally expressed in 
terms of the time derivative of the retarded channel 
current. For the Transmission Line (TL) model which 
is characterized by a current wave moving vertically 
without distortion or attenuation at the same speed and 
in the same direction as the discharge front, the 
radiation fields observed at ground level very far from 
the channel are directly proportional to the channel 
current multiplied by the propagation speed v, as 
shown, for instance, by [2]. However, as demonstrated 
in [3] and [4], for the case of a channel that is 
arbitrarily oriented with respect to the observer’s line of 
sight the field/current expressions noted above are in 
need of correction. A similar correction was also found 
to be needed in the field/current expressions for a 
travelling current discontinuity [5]. Both corrections 
are due to retardation effects and appear as a multiplier 
[ 1 -(v/c)cos~]~* , where c is the speed of light, and 8 is 
the angle between the direction of propagation of the 
current and the line joining the source and the field 
point, to the original equations. In this paper we (1) 
discuss the various situations in which the above factor 
can arise, (2) give physical interpretation of this factor, 
and (3) show that the retardation effects in calculating 
lightning radiation fields can be accounted for without 
the explicit use of the above factor. 

1. Introduction 

A lightning return stroke is modelled as a vertically 
extending electrical discharge from ground. Assume 
that the front of the discharge is moving with a speed v, 

which is usually of the order of one-third the speed of 
light. Ahead of the discharge front (or tip) the current 
is zero and behind the discharge front the current is 
changing with time and is different at various positions 
(heights) along the channel. Various return-stroke 
models describe how this current is varying and how 
the current at a given height z’ is related to the current 
at ground z’=O at any given instant t. To find the 
electric and magnetic fields at a distance due to the 
current distribution on the channel, first take a 
differential length of the channel dz’ at a height z’ as 
shown in Fig. 1. The element dz’ is stationary even 
though the current in it is changing with time. The 
vector potential from this time varying current in dz’ 
can be written as 

dA=~i(z’,t-R(z’)/c)dz’i (1) 
4n Wz’) 

Note that in the above equation for the vector potential 
we used retarded currents, however we do not need any 
‘correction factor’ [ 1 -(v/c)cos~]-’ , similar to that factor 
appearing in the Leonard-Wiechert potential of a 
~ charge, because we are finding the potentials 
from the time varying current in a stationary element of 
length dz’ at a height z’. The discharge front is 
extending at a relativistic speed and hence the observer 
“sees” the retarded length L’(t), of the discharge at time 
t. The retarded length is derived in the next section. 
From the differential vector potential given by (1) we 
can find the scalar potential and then the electric fields 
and magnetic fields as outlined below (see [ 11). 

d(b = -c2jV.dTidr 

dE = -Vd@ - $d?i 

di?=VxdA (4) 
L’(I) 

E(r, t) = jdi? (5) 

0 

L’(I) 

B(r,t) = jdB (6) 

Equations (5) and (6) in’spherical co-ordinates can be 
written, following [ 11, as 
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Fig.1 Geomky of the problem 

Instead of the differential length dz’, one could consider 
the whole retarded length L’(t) and find the vector 
potential A(r,t) as 

&r,t) = 2 1 L’o) i(z’ ,t - R(2) / c) dz’i 

0 R(z’) 
(9) 

and then proceed to find the fields. This method will 
give expressions identical to those given by (7) and (8). 
Equations (7) and (8) are exact for any return-stroke 
speed, for any orientation of channel with respect to the 
observer, and do not contain any explicit correction 
factor. Far from the channel, the radiation fields are 
dominant and are given by the current derivative terms 
in (7) and (8). For example, the radiation electric field 
component is given by 

For some return-stroke models and at very large 
distances from the lightning channel, simplified field 
equations for radiation field (without the integral) can 

be derived from (lOa). For the transmission line (TL) 
model, the simplified equation is [2] 

E,(D,t) = - ---!f-- 
4moc2D 

i(O,t - DjG (10’3 
C 

where D is the horizontal distance between the 

observation point and the channel base, and z^ is a 
vertically directed unit vector (equation (lob) do not 
take into account the effect of ground). It is important 
to note that equation (lob) has been derived for the 
channel essentially perpendicular to the observer’s line 
of sight. If the channel is not perpendicular to the 
observer’s line of sight (for instance, an elevated 
observation point), equation (lob) should be multiplied 
by a geometrical factor sinW[ I-(v/c)cos0] where 0 is the 
angle between the direction of propagation and the line 
connecting the channel segment of interest and the 
observation point. In [2] an incomplete expression 
with sin0 for the geometrical factor is used, as pointed 
out in [3] and [5]. Part of the geometrical factor, 
[1-(v/c)cosQ]-‘, missing in [2] is sometimes called a 
correction factor or F factor. Some confusion 
regarding the use of F factor can also be found in 
literature. Some authors [4] incorrectly interpreted the 
results of [3] and [5] as suggesting that all previously 
published expressions for lightning electromagnetic 
fields are incorrect if v is a significant fraction of the 
speed of light. Some others [6] erroneously claimed 
that the general expressions (7) and (8) require 
corrections involving F factor and used the “corrected” 
general expressions to calculate the fields. In the 
following sections we will show how the correction factors 
suggested by [3-51 arise from the general expression (lOa) 
for radiation electric field under various approximations. 

2. Analysis 

2.1 Retarded channel length to be used in calculating 
radiated fields 
For a lightning return stroke modeled as a current-carrying 
line extending vertically upward at constant speed v with 
its lower end fixed at ground the physical length of the 
discharge channel at a given time t, where t==O is the 
discharge start time, is the product vt. If r is the distance 
from the channel bottom at ground to an observation point 
P (Fig. 1) and c is the speed of light, the channel bottom is 
“seen” by the observer at t=r/c. Hence no information on 
the chamiel length is available at the observation point for 
W/c. For the channel-observer geometry shown in Fig. 1, 
the length (or height) of the channel “seen” by the observer 
at time t, L’(t), is different from vt because of the finite 
propagation times of the electromagnetic signals from the 
end points of the channel to the observer. The height L’(t) 
can be found as follows. If we define the time t such that it 
is the sum of the time required by the return stroke 
wavefront to reach a height L’(t) and the time required for 
a signal to travel from the wavefront at L’(t) to the observer 
atP,tcanbewrittenas 

L’(t) ,. W’(t)) t _ 
V C 

and from Fig. 1, 

(lla) 
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R(L’(t)) = d r2+ LIZ@-2L’(t)rcos(a) (lib) 

Note that when L’=O, R=r from (1 lb) and t=r/c from (1 la). 
Equation (11) is a second degree equation in L’(t) which 
can be solved to obtain 

L’(t) = ($_$J pp+t 
(12) 

1 -- r* 
c i( ) L-J- rcos(a) 2t 

v2 c= 
tt’+rcoS(a) ~-- ( c2 V 

,i 

If the ground is treated as perfectly conducting, (12) 
can also be used, with a replaced by 180”~a, to find the 
apparent length of the image channel “seen” by the 
observer. Even if the velocity of the discharge front is 
varying with height, (11) is valid if v is replaced by an 
“average” velocity and can be solved for L’(t) (see [7,8] 
for details). 

2.2 Approximation to the retarded length 
If the channel length is very small compared to the 
distance to the observer, i.e., if L’<<r, then R(L’(t)) can 
be approximated as (see Fig. 1) 

R(L’(t)) = r- L’(t)cosa (13) 

L’(t) = 
v.(t-r/c) 

1- %osa 

= v.F.(t - r I c) 
(14) 

C 

where v.(t-r/c) is the actual length of the discharge at 
time t-r/c. Now we have seen how the factor, F=[l- 
(v/c)cosa]-l can appear in the approximation to 
retarded length when the observer is far away. Let us 
go on to consider other situations in which the 
correction factor, or F factor, appears. 

2.3 Transmission line model 
In the Transmission Line (TL) model of the return stroke a 
current wave originate at ground and propagate up the 
channel without attenuation and distortion (e.g., [2,3]). 
The retarded current distribution along the channel can be 
expressed in terms of the current at the base of the channel 
as 

i(z’,t_!C$Yj z i(o,t_z’_R(Z’)I 

From Fig. 1, R(z’) can be written al 
C 

(15) 

R(z’) = ,/ z” + rz - 22’ r Cm(a) (16) 

which is same as (1 lb) except it is for any z’. not only for 
z’=L’(t). For a given model and a given channel base 
current, the expression for radiation electric field (10) can 
be evaluated numerically. For each value of t, equation 
(12) has to be solved to find L’(t) and the integration in 
(10) has to be carried out through the upper limit L’(t). As 
noted in the previous subsection, when the electric 
radiation field is calculated as indicated above, there is no 
need for any explicit use of correction factor, F. However, 
calculations using (10) are time consuming and do not 
provide an analytical relation (without the integral) 
between current and remote electric fields, as is sometimes 
desirable. Next we will show how, for the case of the 
electric radiation field far from the channel, (10) can be 
approximated by a simpler expression, without the integral 

but involving an F or correction factor. 
The variables t and z’ are independent since z’ is 

arbitrarily chosen, and thus we can write 
di(O,t-z’k-R(z’)/c) = 

32’ 

‘di(O,t-z’h-R(z’)/c) $t-z’h-R(z’)/c) 

a(t-z’/‘v-R(z’)/c) dz’ 

(17) 
Rearranging (17), we obtain the relationship between the 
time and spatial derivatives of the retarded current, 
involving the F factor, as dictated by the TL model 

(yqt CRti) >- - %(O,J _ z’ - !w) 
v c =_ C 

at 
.v.FTL@‘) (l*) 

where the factor FTL(z’) is a function of z’ and given by 

F,,(Y) = 1+x 
c 

(19) 
and 0(z’) is the angle the channel makes with a line joining 
the point P with the point on the channel at height z’ (see 
Fig. 1). Here we see how the factor can arise while 
converting the time derivative of the retarded current into 
its spatial derivative. There is a physical meaning to the F 
factor in this context, which is given below. If an observer 
at P “sees” a certain current at the ground at time t, the 
observer will “see” the same current at z at a time t” &. 
Then z’ is a function oft” and is given by the solution of 

t,, _ z’(t3 / W(t’Y)_r m 

V c C 

where R(z’) is given by (16). The speed of the current 
wave at z’ as “seen” by the observer (apparent speed), 
dz’/dt, is obtained by differentiating both sides of (20) with 
respect to time and rearranging as 

dz’ dz’ -I 

dt 
- = v.(I--licost)) 
dt” 

= v.FTL 
c 

(21) 

since t equals t” plus a constant. It follows from (21) that 
the F factor for the TL model can be defined as the ratio of 
the apparent speed to the actual speed of the current wave 
in the channel. Using (15) and (18) we can write (10) for 
TL model as 

1 
Er(r,,B,t) = -- 

4X&” (22) 

lf the observer is distant as is necessary for the radiation 
field to be dominant, L’(t)<<r, 8zcq R(z’) zr, and thus E is 
given by 

C 

1 sina v =-.-- 

4z.D c2r 1 _Ycosa 
i(0, 0) - i(0, t - L) I? 

c 1 
C 

(23) 
noting that i(O,t - L’(t)/v - R(L’(t))/c) = i(O,O), as follows 
from equation (11). The factor [1-(v/c)cos(a)]~’ in (23) 
appears as a multiplier (or “correction”) to the speed v of 
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the upward propagating current wave in the channel, 
which in the TL, model is the same as the speed of the 
discharge front. The factor is equal to one when a=!%“ 
(when the line connecting the channel bottom and point P 
is perpendicular to the channel), the situation considered 

by PI. 

2.4 Traveling current source model 
In the previous section we found how the F factor can arise 
in the relation between the time and spatial derivatives of 
the retarded current for the TL model. If the channel 
current is described by another model we may get a 
different F factor. In order to illustrate the model 
dependency of the F factor, we now derive an analytical 
expression similar to (23) for the radiation field far from a 
return stroke channel using the Traveling Current Source 
(TCS) model proposed by [9]. The relation between the 
channel current at z’ and the channel base current for the 
TCS model is given by 

where R(z’) is given by (16). Equation (24) represents a 
model in which the tmward propagating return stroke 
wavefront, with speed v, instantaneously turns on current 
sources along the lightning channel as it passes them. The 
resultant current is assumed to travel downward at the 
speed of light c, without distortion and attenuation. First 
consider the current behind the return-stroke front. The 
variables t and z’ are independent since z’ is chosen 
arbitrarily, and hence using the same procedure as in the 
case of TL model, we can derive the relationship between 
the time and spatial derivatives of the retarded current as 
dictated by the TCS model, 

&(OJL!w) &@J+ clz2) 
c .c.FTcs(z’) c25) 

where the factor F&z’), different from F-&z’), is given by 

1 1 (26) 
Fm (z’) = = 

1+ COSqZ ) 

and O(z’) is as shown in Fig. 1. We can provide a physical 
interpretation of the factor FTcs, similar to that given for 
FE. A current that is “seen” at ground by the observer at P 
would have been “seen” by the observer at height z’ at an 
earlier time t” where t” is given by 

t,, = z’(t’l) R(z’(tV r _-..-.-+--_- (27) 
C C C 

and R(z’) is given by (16). The speed of the current wave 
at z’, as “seen” by the observer (apparent speed), dz’/dt, is 
obtained by taking the time derivative of (27) and 
rearranging 

dz’ dz’ 1 -z-= 
dt dt” 

-c.- = -C.Fzs 
1+ case 

since t equals t” plus a constant. Therefore, from (28), the 
F factor for the TCS model can be defined as the ratio of 
the apparent speed to the actual speed of the current wave 
in the channel (negative sign due to direction of travel 
being downward, that is, opposite to the direction of 
propagation of the discharge front). Substituting (25) in 
(lo), using the far field approximations; that is, letting L’(t) 

<< r, C&x, and R(z’)q performing the integration, and 
using (1 la), we obtain 

1 sina c 
E,(r,a,t) = --- 

4~7~~ c’r l+cosa (29) 

x i O,L’(t)(A+-l) If I -i(O,t-K) 1 & 
L\ “‘C v/ CJ 

E@ation (29) gives the radiation electric field from the 
channel current behind the discharge front only; that is, it 
does not take account of the radiation from the 
discontinuous discharge front inherent in the TCS model. 
The factor [ l+cos a]-’ in (29) appears as a correction to the 
speed c of the downward propagating current wave. 
Comparing (29) with (23) we can see that the F-factor for 
the TCS model, not taking into account the discontinuity at 
the front, is completely different from that for the TL 
model. 

2.5 Current discontinuity at the discharge front 
The TCS model involves a current discontintity at the 
front even when the current at ground level at t=O is zero. 
As a result, equation (10) has to be applied separately to 
the current behind the front and to the current 
discontinuity at the front. The TL and other models can, 
in general, also have a current discontinuity at the return- 
stroke front. We will see how the F factor arises in the 
general radiation field expression for a current 
discontinuity at the front. 

Let i(z’,t-R(z’)/c) describe the retarded current in the 
return stroke channel. Then the current and current 
derivative at the return-stroke front “seen” by the observer 
are given by 

i L’@,t-- 
( 

Ry)) = i(L’(q,Lw) t3W 

ai(L’($,t -R&‘(t)) / c) = d@‘(t), L’(g / v) (3W 
dt dt 

using t as given in (1 la). Let L’(t) and L’.+(t) be the 
positions just below and just above the wavefront at L’(t), 
respectively. The integral of the current derivative across 
the wavefront is equal to the product of the current at the 
wavefront and the velocity of the wavefront as seen by the 
observer at P [lo]. That is, 

“‘*“‘di(L’(t),t-R(L’(t))Ic) 
I dt 

dz’ = iCL,Ctj L’@)) dL’(t) (31) _.- 
L’.(l) ’ v dt 

Differentiating both sides of (1) with respect to t and 
rearranging the terms, we find 

dL’@) - 1 
- = v. 

dt 1+x. 
L’@) - r cos(a) 

c JL’(t)‘+ i-‘-ZL’(t)rcos(a) 
(32) 

1 
V 

1 - ;cos(e(L’il 

Note that the factor [1-(v/c)cos0]~’ in (32) is obtained for a 
traveling step discontinuity in [S] using Heaviside and 
delta functions. As follows from (32), this factor is the 
ratio of the apparent speed to the actual speed of the 
propagating discharge front, depends only on the front 
propagation speed and geometry, and is applicable to a 
discharge front discontinuity of any return stroke model. 
The apparent speed, dL’(t)/dt, of the discharge front can 
also be calculated numerically as {L’(t+At)-L’(t)}/L\t, where 
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At is the incremental time, and L’(t+At) and L’(t) are which is identical to the relation obtained by [2] for the far 
determined from (12). Substituting (32) in (3 l), using the radiation fields at ground level from return strokes 
resulting equation in (lo), we find the radiation electric assumed to obey the TL model. If we additionally include 
field from a traveling current discontinuity (the Yurn-on” the effect of the perfectly conducting ground plane, we 
field) must multiply the right hand side of (36) by 2. 

(334 
Using the approximation for far-fields, that is, letting 
L’(t)<-+, 0%x, and R(L@r, we get the “turn-on” field in 
the far-field as 

The factor [l-@/c) cos o$’ in (33b) appears as a 
“correction” to the return stroke discharge front speed v 
and is applicable to any return stroke model with a current 
discontinuity at the wavefront. The correction factor 
associated with the current discontinuity at the return- 
stroke hont derived here and for a traveling step 
discontinuity of [S] and [lo] is the same as the expression 
obtained for the continuous current waveform in the 
channel for the TL model of [3]. Note that the F factor 
associated with the channel current behind the discharge 
t%ont is different for models other than the TL, as 
illustrated previously. 

2.6 Far-distance radiation field taking into account 
current discontinuity at the dischargq front 

2.6.1 TL model 
The current at the return-stroke front for the TL model is 
i(L’(t),L’(t)hi) = i(O,O). Therefore, if the current at ground 
starts from zero at t = 0, i(O,O) = 0, there is no current 
discontinuity at the propagating discharge front. If the 
current at the ground starts from a non-zero value at t=O, 
the current will have the same non-zero value at the 
propagating front. The “turn-on” far radiation field is 
obtained from (33b) as 

lsina v 
E(r,a,t) = --. i(O,O@ 

(34) 

4~~0 c’r l_!fcosa 
c 

which is equal in magnitude aud opposite in sign to the 
term containing i(O,O) in (23). Adding (23) and (34) we 

get 

1 sin(a) v 
E(r,a,t) = -- 

(35) 

43r~0 czr l_lcos(aJ 
i(O,t -r / c)& 

C 

which is the total radiation electric field far from the 
channel for the TL model, whether or not there is a 
discontinuity at the discharge front. 

For the special case of measurements at ground far 
from the channel, cx=90°, equation (35) in a Cartesian 
coordinate system where z^ is an upward directed unit 
vector, becomes 

E(r, t) = ’ - ---Jf--i(O,t-r/c)i 
47~~~ car 

2.6.2 TCS model 
The current at the return-stroke front for the TCS model is 
ic(t),L’(t)/v) = i(O,L’(t)/v+L’(t)/c). Therefore, unlike the 
TL model, even if the current at ground starts from zero, 
the current at the return-stroke front above ground will 
have a non-zero value. The “turn-on” far radiation field is 
obtained from (33b) as 

lsina v 
E(r,a,t), = --. i & 

(37) 

4nEo cZr I_Yeosa ( 
O.L’(l)(l+ -J-) 

v c 1 
C 

The total radiation electric field for the TCS model is 
obtained by summing (29) and (37) to give 

lsina c 
E(r,a,t)=-- ~ 

4z.9, c’r ‘I+ cosa ( 
i(O,L’(l)(J-+~))-i(O,t-K) 

c v c 1 

V 
+ 

I-!&.a 
i(0, L’(?)(i + t))]& 

c 
(38) 

For the special case of measurements at ground os=90”, 
equation (38) in a Cartesian coordinate system becomes 

Noting that for a=90”, L’(t)i<r, L’(t)%(t)=v(t-r/c), and 
defining 

k=ls 
c 

(40) 

equation (39) becomes 

E(r,,t) = &$.[ki(O,k(t-r/c))-i(O,t-r/cili c41) 

which is the same relation obtained by [ll], for far 
radiation fields at ground level from return strokes 
assumed to obey the TCS model. If we additionally 
include the effect of perfectly conducting ground plane, we 
must multiply right hand side of (4 1) by 2. 

3. Discussion and conclusion 

It follows from the analysis in the previous section that in 
calculating lightning radiation fields one can use either the 
general formula (lOa) without any explicit “correction 
factor” (F factor) or its approximations involving F factors, 
such as (35) for the TL model. We have shown that the 
correction factor appears as various manifestations of 
retardation effects: in the far-distance approximation to the 
retarded channel length and while converting the time 
derivative of the retarded current into spatial derivative. 
For simple models like the TL and TCS models, in 
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which the current at one point on the channel appears 
at another point at another time, the F factor associated 
with current behind the front can be interpreted 
physically as the ratio of the apparent propagation 
speed of the current wave “seen” by an observer some 
distance from the discharge to its actual speed. The F 
factor associated with a propagating discontinuity can 
always be interpreted as the ratio of the apparent speed 
of the front to its actual speed. ’ The expressions for 
calculating the fields given in [l] and [12, section 7.31, 
are general expressions derived from Maxwell’s 
equations and require no correction factors regardless 
of discharge extension speed (even near the speed of 
light), provided the retarded channel length is used in 
the calculations. In this respect, the allegation of the 
first sentence of [4] that the field equations in [l] 
and[l2] describing the electromagnetic fields that are 
radiated by current pulses similar to lightning need 
correction when the speed of the pulse is a significant 
fraction of the speed of light is misleading. In [6] the F 
factors are applied to the vector and scalar potentials of 
the current carrying element dz’ and general integral 
electric field expression similar to (7) but having 
additional multipliers [l-@/c) COST]” for current- 
integral (static) terms, [ l-(v/c)co~0]~~ for current 
(induction) terms and [ I-(v/c)cos~]~’ for current- 
derivative (radiation) terms, are obtained. The general 
expressions for electric fields in [6] are incorrect and 
therefore the calculated field waveshapes in [6] at 
various elevation angles and distances in their figures 
2-5 may be wrong. In [6] the Lienard-Wiechert 
potentials of a uniformily moving point charge, which 
contain the F factor [ I-(v/c)cosQ]-’ , is used to find the 
potentials from the current in an elemental channel 
segment dz’. This approach is incorrect for the 
following reasons. Point charge is an approximation to 
finite size charge distribution when the observation 
distance is very large compared to the size (volume) of 
the distribution. The Lienard-Wiechert potential is an 
approximation to the potential of a uniformily moving 
finite charge distribution if the size of the charge is 
very small compared to the distance to the point where 
the potential is found. The exact expression for the 
potential would be obtained, without any explicit 
involvement of the F factor [l-(v/c)co&]~‘, by 
integrating the contribution to the potential from each 
elemental charge volume within the retarded charge 
volume at each instant. If p is the uniform charge 
density of the line the total charge q = p.L and the 
charge in a short segment on the line is p.dz’. The 
potential at a point is given by 

$+=I p & 
o 47r&&Z’) 

(42) 

where R(z’) is the distance from the observer to the 
retarded position of each segment dz’ of the line at a 

distance z’ from the bottom end of the line. If L<<r, as 
for point charge approximation, and using the far- 
distance approximation to retarded length, (42) can be 
reduced to 

+_!!._ l (43) 
4m,,R l-LdJ 

where R’ is the retarded position of the charge with 
respect to the observer. Equation (43) is the retarded 
potential (Lienard-Wiechert potential) of a uniformly 
moving point charge. For finite size charges (42) is the 
exact expression for 
factor, while (43) is 
contain the F factor. 

potential and do not have the F 
a far-distance approximation and 
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