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Abstract: A new approach, based on antenna theory, is 

used to evaluate the lightning return-stroke current as a 

fitnction of the and height. The lightning channel is 
modeled as a lossy, straight, attd vertical monopole 
antentla above a perfectly conducting ground, and is fed 
by a source voltage. The source voltage is a function of 
the assumed current at grotmd level and the input 
impedance of the tnonopole antenna. An electric field 
integral equation (EFIE) is employed to describe the 
electromagnetic behavior of the antetma. The mmterical 
solution of EFIE by the Method of Moments (MOM) in 
time domain provides the time-space distribution of the 
current along the lightning channel. This new atttenna- 
theory model with specified current at the channel base 
requires only two adjustable parameters: the returtt- 
stroke propagation speed and the channel resistance per 
unit length. The new tnodel is compared to the tnost 
cotnmonly used lightning return-stroke models in terms 
of the temporal-spatial distribution of channel current 
and predicted electric fields. 

1. Introduction 

Rehtrn-stroke modeling can be viewed as the specification 
of the return-stroke channel current as a fitnction of 
height and time. Most models of the return stroke 
specify an analytical relation between the current at 
each point of the channel and the chantlel base current 
(current at ground level). A suitable model should be 
consistent with the measured characteristics of the 
return-stroke, namely: 
-Current at tlte base of the channel. 
-Wave front propagation speed. 
-Electric and magnetic fields at various distances from 
the channel at ground level. 
-Variation of light intensity with height. 
A brief discussion of some of the most used model [l-S] 
follows. In the transmission line model (TL) the current 
injected at the chanttel base propagates upward as it 
would on a losseless transmission line. The fields 
calculated front this model do not agree with the 
measurements, particularly at longer times and closer 
ranges. 

In the modified transmission line tnodel with exponential 
current decay with height (MTLE) the current wave 
suffers no distortion but its amplitude decays 
exponentially with height. The total charge density 
distribution is unrealistically skewed toward the bottom 
of the channel and consequently the model is not able 
to predict the very close electric field. 
In the case of the tnodified transmission line model 
with linear current decay with height (MTLL), the 
calculated fields agree with the measurements, at all 
ranges. 
In the modified transmission-line tnodels ( MTLL and 
MTLE) the current attenuation with height is specified 
arbitrarily, and current dispersion is ignored. 
The Diendorfer and Uman (DU) model and its 
modifications consider the channel current as the linear 
stml of two components, one due to a fast discharge of 
the leader core and the other due to a slower discharge 
of the corona sheath surrounding the leader core. The 
DU model provides a good match between the model- 
predicted and measured electromagnetic fields and 
introduces current dispersion, but the specification of 
the dispersion is arbitrary. 
In this paper, a new model based on antenna theory 
(AT) .lltat is a complete solution to Maxwell’s 
equations, is presented to describe the channel current 
profile. A monopole antenna of length H above a 
perfectly conducting ground is used to model the 
return-stroke channel (Fig. I).The antenna is fed by a 
source whose voltage v(t) is given by the following 
equation: 

v(t)=z(t) * i(O,t) (I) 

where i(O,t) is the specified channel base current, z(t) is 
the inverse Fourier transfortn of the input impedance of 
the tnonopole antenna and * denotes the convolution. 
The ittput impedance of the monopole antenna, which 
is a fttnctiott of its length, radius, and distributed 
resistance, is calculated applying the MOM to the EFIE. 
In the AT model of the return-stroke, only two 
adjustable parameters are needed, the propagation 
speed and the resistance per unit length. The evolution 
of the current wave propagating along the channel is 
governed by antentla theory. 
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2. Theory 

The response of a monopole antenna above a perfect 
ground to an incident electromagnetic wave, ei, can be 
found by considering the diffraction of a transient 
electromagnetic wave caused by a metallic obstacle [6]. 
Due to the presence of ground, the total incident wave 
at any point in space is: 

es=ei+e’ (2) 

Where e” is the wave reflected from ground. The tolal 
incident electromagnetic field ea induces current i(s,t) 
at any point s of antentla. This current according to 
Maxwell’s equations produce the scatterad electromagnetic 
field, ed. At any point P in space we have: 

ed (P,t)=L[i(s,t)] (3) 

Where I. is the integro-differential operator which is 
defined by Maxwell’s equations [6,7]. The contimlity of 
tangential component of the total electric field at any 
point on the antenna surface requires that: 

s l e*(s,t)+ L[i(s,t)]=O (4) 

Using the definition of the I. operator [5,6], we can 
write: 
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Where R=[(s-so)2+a2]“2 , R*=[(s-so*)2+a2]“2 ,b=t-R/v, 
t,*=t-R*/v , and v=(s+,)-‘~ is the prbpagation speed 
along the channel. 
The last three terms in equation (5) represent the effect 
of perfect ground. s and so are the observatiotl and 
source points on the antenna respectively, so* is the 
image point of a source point sO. s, so, so* arc the 
corresponding unit tangential vectors. “a” is the radius 
of the antenna. The left hand-side of equation (5) 
represents the applied electric field. In this paper the 
excitation is realized by a voltage source , v(t), 
described in the introduction, which creates an electric 
field obtained as [ 71: 

e”(s,t) = -Vv(t) (6) 

The nrmierical solution of equation (5), the electric 
field integral equation (EFIE), by the Method of 
Moments (MOM) in the time domain [6, 71 provides the 
time-space distribution of the current along the return 
stroke channel. 
The propagation along the chamlel of the current 
injected at ground is goverued by antenna theory. To 
slow the propagating current lo a value consistent with 
observations, v < 3x lO*, we use E > ~~ in calculating the 
current variation and then use that current to calculate 

the fields with E = Em. The introduction of a distributed 
resistance of the antenna results in both attenuation and 
dispersion of the current, in agreement with time- 
resolved optical observations. The electromagnetic 
fields computed using this new model are in a good 
agreement with the measurements. 

manopole 
alltelula l-l 

Fig. 1: A lossy monopole antenna above a perfectly 
conducting ground. 

3. Results 

For the current assumed at ground level (see Fig. 2) the 
propagation speed, v, is assumed to be 1.3x lo* m/s, and 
the distributed resistance is taken to be about 0.1 nlm 
to provide an agreement between the computed and 
measured electric fields at SO m (see Fig. 4.a). Fig. 2 
illustrates the current versus time waveforms at 
different heights along the lightning channel for the 
TL, MTLE, MTLL, DU, and AT models. Fig. 3 shows 
current peak (CP), rise time (RT), and half peak width 
(HW) for these models as a function of height. In the 
TL model, the current propagates without either 
atlenuation or distortion, so that the CP, RT and HW 
do not change with height. The MTLE model shows a 
very pronomlced attemlation without dispersion. The 
DU and AT models exhibit attenuation and distortion, 
but in the DU model both the attenuation and distortion 
are more pronounced at the bottom of channel, and the 
dispersion vanishes after the first kilometer or so. In the 
AT model, the attenuation and dispersion increase with 
height gradually, consistent with the optical measurements 
of Jo&on et al. [S]. The MTLL model shows an 
attemlation similar to the AT model but without 
dispersion. 
Fig. 4 illustrates the electric fields gredicted by various 
mod& at 50 m, 5 km and 100 km. Except for the TL 
and MTLE models, the SO m electric field predicted by 
all the models are consistent with experimental data, At 
5 km, the electric field exhibits a ramp for all the 
models except for the TL model, consistent with 
measurements. At 100 km, all the models predict the 
same pe(ak and rise time. The MTLE and MTLL models 
exhibit a zero-crossing at some tens of microseconds in 
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Fig. 2: Current as a function of time at different 

heights along the channel for the TL, MTLE, 
MTLL, DU and AT models, MTLE: X=2000 m (31, 
MTLL: H=7.5 Km [2], DU: q,,,=O.6 p, z, = 5 ps [S] 
AT: R=0.07 !Ym 

Fig. 3: Characteristics of the spatial current 
distrihution for the TL, MTLE, MTLL ,DU, and AT* 
models. 
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Fig. 4: Electric field at SO m, 5 km, and 100 km, 
predicted by the TL, MTLE, MTLL, DU, and AT 
models. 

agreement with generally accepted typical field 
signature at this range. The zero-crossing for AT and 
DU models does not occur within the first 100 
microseconds considered in Fig. 4, however this feature 

can be achieved choosing a faster decaying current 
waveform at ground level. 
Ringing after the initial peak in Fig. 2e and the abrupt 
change in field slope at 60 microseconds for the MTLL 
model (Fig. 4c) are due to numerical instability. 

4. Conclusion 

A new model for the lightning return-stroke based on 
antenna theory is introduced and compared with other 
models. The specification of appropriate speed of 
propagation and distributed resistance of the channel 
in addition to the channel base current is sufficient to 
make the model-predicted electric fields consistent with 
measurements. The AT model results are intermediate 
in characteristics between models that have previously 
been most used. 
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