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Equivalency of Lightning Return-Stroke Models
Employing Lumped and Distributed Current Sources

Grzegorz Maslowski and Vladimir A. Rakov, Fellow, IEEE

Abstract—We show that any engineering return-stroke model
can be expressed, using an appropriate continuity equation, in
terms of either lumped or distributed current sources with the re-
sultant longitudinal-current distribution along the channel being
the same. This property can be viewed as the duality of engineering
models. The conversion alters the actual-corona current (if any) of
the model. For lumped-source (LS) models the actual-corona cur-
rent is unipolar and directed radially out of the channel core, while
for distributed-source (DS) models it is unipolar and directed into
the channel core. For LS models converted to DS models and for
the Diendorfer–Uman (DU) model converted to the equivalent LS
model, the corona current is the sum of the negated actual-corona
current (if any) and a fictitious-corona current, the latter being
bipolar. For the transmission-line (TL) model (no longitudinal cur-
rent attenuation with height) expressed in terms of DSs, there is
only a fictitious bipolar corona current component. Conversion of
the traveling-current source (TCS) and Bruce–Golde (BG) models
to equivalent LS models involves replacement of the actual, unipo-
lar corona current with a fictitious one, the latter current being
bipolar near the channel base and unipolar at higher altitudes.

Index Terms—Corona sheath, current continuity equation, dis-
tributed sources (DSs), duality, lightning, lumped source (LS),
return-stroke model.

I. INTRODUCTION

COORAY [1] showed that any engineering model implying
a lumped current source at the lightning-channel base (any

transmission-line (TL)-type model) can be formulated in terms
of sources distributed along the channel and progressively acti-
vated by the upward-moving return-stroke front. This has been
previously demonstrated for one model (modified TL model
with exponential-current decay with height) by Rachidi and
Nucci [2]. An engineering return-stroke model is defined here
as an equation relating the longitudinal channel current (at any
height and any time) to the current at the channel origin (or an
equivalent equation in terms of the line charge density) [3], [4].
The approach suggested by Cooray [1] was used by Rachidi
et al. [5] to generalize five engineering models in order to take
into account a tall strike object.

Conversion of a lumped-source (LS) model to an equiva-
lent distributed-source (DS) model, both illustrated in Fig. 1,
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Fig. 1. Schematic representation of engineering return-stroke models that em-
ploy (a) a lumped current source at the lightning channel base (LS models) and
(b) distributed current sources along the channel (DS models). v is the upward
return-stroke front speed, c is the speed of light, and Z0 is the characteristic
impedance of the lightning channel (matched conditions at ground are implied
in DS models). LS models with longitudinal-current decay with height imply
current sinks distributed along the channel, as shown in (a).

involves the use of 1) the continuity equation derived for a
downward-propagating current wave and 2) the longitudinal-
current equation for the LS model. We will show in this paper
that a DS model can be converted to equivalent LS model using
1) the continuity equation derived for an upward-propagating
current wave and 2) the longitudinal-current equation for the DS
model. Longitudinal current equations for both LS and DS mod-
els, often referred to as TL type and traveling current-source type
models, respectively, are summarized by Rakov and Uman [3].
Note that in DS models [see Fig. 1(b)], corona current is in-
jected into the channel core to drain the charge stored around
the core by preceding leader. On the other hand, in LS models
[see Fig. 1(a)] corona current flows out of the channel core to
neutralize the charge deposited around the core by preceding
leader.

Although the direction of propagation of the longitudinal
current wave is upward for the LS models and downward for
the DS models, the charge of the same sign is transported to
ground in both types of models. The overall longitudinal current
distribution along the channel extends upward for any model,
as illustrated in [4, Fig. 12.8].
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Fig. 2. Differential channel segments used in deriving continuity equations
for (a) DS models and (b) LS models. i and icor are the longitudinal and radial
corona currents, respectively.

We will also show that the conversion alters the actual corona
current of the model. Specifically, for LS models that are con-
verted to DS models, the corona current is the sum of the negated
actual current and a fictitious current, the latter being bipolar.
For the TL model expressed in terms of DSs, there is only ficti-
tious corona-current component, since no actual corona current
can flow in this model.

II. CONTINUITY EQUATION FOR DS MODELS AND

CONVERSION OF LS MODELS TO DS MODELS

Cooray [1], considering a differential channel segment [see
Fig. 2(a)] and using Kirchhoff’s current law, derived the follow-
ing continuity equation for DS models:

icor(z′, t)
dz′

= i′cor(z
′, t) = −∂i(z′, t)

∂z′
+

1
c

∂i(z′, t)
∂t

(1)

where i(z′, t) is the longitudinal channel current at height z′

and time t, c is the speed of light, icor(z′, t) is the radial corona
current at height z′ and time t, and i′cor(z

′, t) is the radial corona
current per unit length injected into the channel.

Note that the corona current given by (1) is the actual corona
current only for DS models where the current wave propagates
downward at the speed of light c. The most used models of this
type include the Diendorfer–Uman (DU) and traveling-current
source (TCS) models. The Bruce–Golde (BG) model [6] is often
also assigned to this type. For the DU model [7], the radial-
corona current per unit channel length, derived from (1), is
given by

i′cor(z
′, t) = e−(t−z′/v)/τD

×
[

di(0, t)
v∗dt

∣∣∣∣
t=z′/v∗

+
i(0, z′/v∗)

v∗τD

]
, t ≥ z′/v (2)

where v∗ = (1/v + 1/c)−1, and τD is the discharge time con-
stant. This corona current represents progressively activated
sources that inject into the channel core the charge deposited
around the core by preceding leader. For the TCS model [8],

i′cor(z
′, t) can be expressed, based on (1), as

i′cor(z
′, t) =

1
v∗ i

(
0,

z′

v∗

)
δ(t − z′/v) (3)

where δ(t − z′/v) is the Dirac delta function. For the BG model,
the corona-current equation can be obtained from (3) by replac-
ing c with ∞ in the expression for v∗, such that v∗ = v. Equa-
tions (2) and (3) give actual corona currents for the DU and
TCS models, respectively. These currents are unipolar and are
directed radially into the channel core.

One can obtain the charge per unit channel length ρ(z′, t)
for the DU and TCS models by substituting (2) and (3) in the
following equation:

ρ(z′, t) = − i(z′, t)
c

+
∫ t

z′/v

i′cor(z
′, τ) dτ, t ≥ z′/v (4)

Equation (4) is another form of the continuity equation for
DS models, which can be readily derived from (1).

One can formally define the equivalent corona current for LS
models, using continuity equation (1), as done in [1] and [5].
The most used LS models include the TL model and modified
TL models with linear (MTLL) and modified TL models with
exponential (MTLE) current decay with height [9]–[11]. For
these models, (1) and (4), for t ≥ z′/v, become as follows:

TL Model:

i′cor(z
′, t) =

1
v∗

∂i(0, t − z′/v)
∂t

ρ(z′, t) =
i(0, t − z′/v)

v
(5a)

MTLL Model:

i′cor(z
′, t) =

1
v∗

∂i(0, t − z′/v)
∂t

(
1 − z′

H

)

+
i(0, t − z′/v)

H

ρ(z′, t) =
i(0, t − z′/v)

v

(
1 − z′

H

)

+
1
H

∫ t

z′/v

i(0, τ − z′/v)dτ (5b)

MTLE Model:

i′cor(z
′, t) =

1
v∗

∂i(0, t − z′/v)
∂t

e−z′/λ

+
e−z′/λ

λ
i(0, t − z′/v)

ρ(z′, t) =
i(0, t − z′/v)

v
e−z′/λ

+
e−z′/λ

λ

∫ t

z′/v

i(0, τ − z′/v)dτ (5c)

where H is the total channel length, and λ is the current-decay
height constant. We will show in Section V that the corona
current for LS models converted to equivalent DS models is the
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sum of the negative of the actual corona current and a fictitious
corona current.

Equations (5a)–(5c) can be used to express the longitudinal
current for LS models in terms of DSs as [2], [5]

i(z′, t) =
∫ H

z′
i′cor

(
ξ, t − ξ − z′

c

)
dξ (6)

where z′ denotes the height below the return-stroke front, H =
H(z′, t) = v∗(t + z′/c) is the return-stroke wave front height
as seen by observer at height z′, v∗ = (1/v + 1/c)−1, and ξ is
the height between z′ and H [see Fig. 1(b)]. Note that (6) can
be also used to express the longitudinal current for the DU and
TCS models in terms of the corona current i′cor(z

′, t) per unit
channel length, which is given by (2) and (3), respectively.

III. CONTINUITY EQUATION FOR LS MODELS

As stated in Section I, one can also convert DS models
to equivalent LS models. In order to do this, we first derive
the continuity equation for LS models, which relates the
longitudinal return-stroke current to the radial-corona current
per unit channel length. Such continuity equation for LS models
is presently not found in the literature. Two different approaches
can be employed: 1) using the continuity equation formulated
in [12] as the starting point for LS models and 2) considering
a differential channel segment and using Kirchhoff’s current
law, which is an approach similar to that used in [1] in deriving
the continuity equation for DS models (see Section II). Using
these two methods, we will derive two different but equivalent
continuity equations for LS models, which will be combined
to obtain an expression for the actual corona current in LS
models. The latter expression, in turn, will be used in deriving
a charge-density equation in terms of both longitudinal and
corona currents for LS models.

A. Derivation of Continuity Equation for LS Models Using
Thottappillil et al. [12, eq. (20)]

The general continuity equation derived for the return stroke
by Thottappillil et al. [12] relates the charge density per unit
channel length at any height z′ and time t to the longitudinal
return-stroke current

ρ(z′, t) =
i(z′, z′/v)

v
−

∫ t

z′/v

∂i(z′, τ)
∂z′

dτ . (7)

The longitudinal-current distribution along the channel for
LS models is specified by Rakov and Uman [3] as

i(z′, t) = P (z′) i(0, t − z′/v)u(t − z′/v) (8)

where i(0, t) is the channel-base current, P (z′) is the height-
dependent current attenuation factor introduced by Rakov and
Dulzon [13], and u(t − z′/v) is the unit-step function. We can
rewrite equation (7) using (8) as

ρ(z′, t) =
i(z′, t)

v
− dP (z′)

dz′

∫ t

z′/v

i(0, τ − z′/v) dτ . (9)

Taking the time derivative on both sides of (9), we get

∂ρ(z′, t)
∂t

=
1
v

∂i(z′, t)
∂t

− dP (z′)
dz′

i(0, t − z′/v). (10)

Below the propagating return-stroke front, that is, for t >
z′/v, the continuity equation in a general form can be expressed
as [12]

∂ρ(z′, t)
∂t

= −∂i(z′, t)
∂z′

. (11)

Substituting (11) in (10), we can write

−dP (z′)
dz′

i(0, t − z′/v) = −∂i(z′, t)
∂z′

− 1
v

∂i(z′, t)
∂t

. (12)

Equation (12), which is equivalent to (9) and therefore repre-
sents the continuity equation for LS models, will be employed
below to obtain an equation for the actual corona current in LS
models.

B. Derivation of Continuity Equation for LS Models Using the
Kirchhoff’s Current Law

Consider a lightning return-stroke current wave that propa-
gates upward from ground to the cloud [see Fig. 1(a)]. As the
current injected at the ground surface traverses the channel seg-
ment shown in Fig. 2(b), the radial-corona current in general will
cause a reduction of this current. As a result, current at the top
of the channel segment will be smaller than that at its bottom.
The difference in these two currents will give the total corona
current flowing radially outward from the channel segment. For
channel segment dz′ located at height z′ above ground, we can
write

icor(z′, t) = i(z′ − dz′, t) − i(z′, t + dt) (13)

where i(z′ − dz′, t) and i(z′, t + dt) are the currents at the bot-
tom and top of the channel segment, respectively, and icor is the
radial-corona current which serves to neutralize the usually neg-
ative charge deposited along the channel by preceding leader.
Using the Taylor’s expansion, we can rewrite (13) as

icor(z′, t) = i(z′ − dz′, t) −
[
i(z′, t) + dt

∂i(z′, t)
∂t

]
. (14)

Taking into account the fact that dt = dz′/v

icor(z′, t) = i(z′ − dz′, t) − i(z′, t) − dz′

v

∂i(z′, t)
∂t

. (15)

After dividing both sides of (15) by dz′, we find

icor(z′, t)
dz′

= i′cor(z
′, t)

= − i(z′, t) − i(z′ − dz′, t)
dz′

− 1
v

∂i(z′, t)
∂t

. (16)

For dz′ → 0, the corona current per unit length i′cor “bleeding
off” the lightning channel (this current flows in the radial-corona
sheath surrounding the channel core which carries the longitu-
dinal current) at height z′ is given by

i′cor(z
′, t) = −∂i(z′, t)

∂z′
− 1

v

∂i(z′, t)
∂t

. (17)
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IV. CONVERSION OF DS MODELS TO LS MODELS

We now combine the result of Section III-B with that obtained
in Section III-A. Since the right-hand sides of (12) and (17) are
identical, their left-hand sides should be equal as well and the
resultant equation is given by

i′cor(z
′, t) = −dP (z′)

dz′
i(0, t − z′/v). (18)

Equation (18) describes the actual radial corona current for
LS models, because this current is associated with the de-
posited charge-density component introduced by Thottappillil
et al. [12]. Indeed, taking the time integral of both sides of (18)
from −∞ to t, we get∫ t

z′/v

i′cor(z
′, τ) dτ = −dP (z′)

dz′

∫ t

z′/v

i(0, τ − z′/v) dτ (19)

where the right-hand side is the same as the second term given
in [12, eq. (20)] and defined as the deposited charge-density
component.

Note that (17), which is the continuity equation derived for
LS models (the longitudinal-current wave propagating upward),
is different from (1), which is the continuity equation derived
by Cooray [1] for DS models (the longitudinal-current wave
propagating downward).

Equation (9), which is the continuity equation derived for LS
models [12], is equivalent to (12) and can be rewritten using
(18) as

ρ(z′, t) =
1
v
i(z′, t) +

∫ t

z′/v

i′cor(z
′, τ) dτ (20)

Note that the second term of (20) represents the deposited
charge-density component in terms of the corona current per
unit channel length. This equation is the LS-model counterpart
of (4), the latter being derived for DS models.

In the following, we will obtain equations for the corona cur-
rent per unit length and charge per unit length for DS mod-
els converted to equivalent LS models using (17) and (20),
respectively.

A. DU Model

The longitudinal-current equation for the DU model is [7]

i(z′, t) =
[
i(0, t + z′/c)−i(0, z′/v∗)e−(t−z′/v)/τD

]
× u(t − z′/v). (21)

After substituting (21) in (17) and applying some algebra, we
can write

i′cor(z
′, t)

=− ∂

∂z′

{[
i(0, t+z′/c)−i(0, z′/v∗)e−(t−z′/v)/τD

]
u(t−z′/v)

}

− 1
v

∂

∂t

{[
i(0, t+z′/c)−i(0, z′/v∗)e−(t−z′/v)/τD

]
u(t − z′/v)

}

= − 1
v∗

∂i(0, t+z′/c)
∂t

+e−(t−z′/v)/τD
di(0, t)
v∗dt

∣∣∣∣
t=z′/v∗

, t ≥ z′/v.

(22)

We can rewrite (22) in an equivalent form, which, similar to
LS models converted to DS models (see Section V), contains
the negative of actual corona current. In order to show this, we
expand the first term of (22) as

− 1
v∗

∂i(0, t + z′/c)
∂t

= − 1
v∗

∂

∂t

[
i(0, t + z′/c)−i(0, z′/v∗)e−(t−z′/v)/τD

]

+
i(0, z′/v∗)

v∗τD
e−(t−z′/v)/τD .

Substituting the right-hand side of this equation in (22), we
get

i′cor(z
′, t)

= − 1
v∗

∂

∂t

[
i(0, t + z′/c)−i(0, z′/v∗)e−(t−z′/v)/τD

]

+ e−(t−z′/v)/τD

[
di(0, t)
v∗dt

∣∣∣∣
t=z′/v∗

+
i(0, z′/v∗)

v∗τD

]
, t≥ z′/v

(23)

Equations (22) and (23) are equivalent and give the equivalent
corona current per unit channel length for the DU model con-
verted to equivalent LS model. The first term on the right-hand
side of (23) represents the fictitious corona current, while the
second term represents the negative of the actual corona current
for the DU model. Note that the equivalent corona current given
by (23) should be negated to make it directly comparable to the
actual corona current, which is given by (2).

Substituting (22) and (21) in (20), we get

ρ(z′, t) =
i(0, t + z′/c) − i(0, z′/v∗)e−(t−z′/v)/τD

v

+
∫ t

z′/v

[
−

(
1
v

+
1
c

)
∂i(0, τ + z′/c)

∂τ

+ e−(τ−z′/v)/τD
di(0, t)
v∗dt

∣∣∣∣
t=z′/v∗

]
dτ

=
i(0, t + z′/c)

v
− i(0, z′/v∗)e−(t−z′/v)/τD

v

+
[
−

(
1
v

+
1
c

)
i(0, τ + z′/c)

]t

z′/v

+

[
−e−(τ−z′/v)/τD

τD

v∗
di(0, t)

dt

∣∣∣∣
t=z′/v∗

]t

z′/v

= − i(0, t + z′/c)
c

− i(0, z′/v∗)e−(t−z′/v)/τD

v

+
i(0, z′/v∗)

v∗ +
τD

v∗
di(0, t)

dt

∣∣∣∣
t=z′/v∗

− e−(t−z′/v)/τD
τD

v∗
di(0, t)

dt

∣∣∣∣
t=z′/v∗
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= − i(0, t + z′/c)
c

−
[
i(0, z′/v∗)

v

+
τD

v∗ di(0, t)
dt

∣∣∣∣
t=z′/v∗

]
e−(t−z′/v)/τD

+
1
v∗

[
i(0, z′/v∗)+τD

di(0, t)
dt

∣∣∣∣
t=z′/v∗

]
, t ≥ z′/v.

(24)

The charge density given by (24) is identical to the total charge
density derived for the DU model by Thottappillil et al. [12],
who used a general continuity equation as applied to lightning
return strokes.

B. TCS Model

The longitudinal current at a given height z′ above ground
and at a given time t for the TCS model is given in [8] as

i(z′, t) = i(0, t + z′/c)u(t − z′/v) (25)

where i(0, t) is the channel-base current. This equation can be
obtained from (21) by setting τD = 0. Similarly, the equivalent
corona current for the TCS model follows directly from (22)
when τD = 0:

i′cor = − 1
v∗

∂i(0, t + z′/c)
∂t

, t ≥ z′/v. (26)

This equivalent corona current per unit length implies a LS
at the channel base.

Substituting (25) and (26) in (20), we get

ρ(z′, t) =
i(0, t + z′/c)

v
− 1

v∗

∫ t

z′/v

∂i(0, τ + z′/c)
∂τ

dτ

= − i(0, t + z′/c)
c

+
i(0, z′/v∗)

v∗ , t ≥ z′/v (27)

which also directly follows from (24) when τD is replaced with
zero.

C. BG Model

The longitudinal-current equation for the BG model [6] is

i(z′, t) = i(0, t)u(t − z′/v) (28)

which can be obtained from (25) by replacing c with ∞. There-
fore, the equivalent corona current for the BG model can be
obtained from the equivalent corona current derived for the TCS
model [see (26)] by replacing c with ∞, that is

i′cor = −1
v

∂i(0, t)
∂t

, t ≥ z′/v. (29)

Substituting (28) and (29) in (20), we get

ρ(z′, t) =
i(0, z′/v)

v
, t ≥ z′/v (30)

which also directly follows from (27) when c is replaced with∞.
Equations (24), (27), and (30) are based on (20), which is one

of the forms of the continuity equation for LS models. Thus,

the TCS, BG, and DU models can be converted to equivalent
LS models with equivalent corona currents given by (23), (26),
and (29), respectively. Note that equivalent corona currents in
the TCS, BG, and DU models expressed in terms of a LS at
ground level are different from actual corona currents for these
models, as discussed in Section V. On the other hand, both the
longitudinal-current distribution along the channel and the total
charge-density distribution are each the same for LS and DS
formulations.

V. INTERPRETATION OF THE CORONA CURRENT IN LS
AND DS MODELS

As noted in Section I, the conversion of LS to DS or DS to LS
models alters the actual (related to the deposited charge density
component) corona current of the model. We will refer to this
altered corona current as the equivalent corona current. Each
type (LS or DS) of model has its corresponding form of the
continuity equation: (1) for DS models and (17) for LS models.
The use of a “noncorresponding” continuity equation (1) for LS
models or (17) for DS models gives rise to the equivalent corona
current. For LS models converted to DS models, the equivalent
corona current is the sum of the negated actual corona current
and a fictitious corona current. For DS models converted to LS
models, this is true only for the DU model. For the TCS and BG
models, equations for the equivalent corona current apparently
do not involve the actual corona current.

In order to obtain the equivalent corona current per unit chan-
nel length for LS models converted to DS models, we substitute
(8) into (1) to get

i′cor(z
′, t) = P (z′)

1
v∗

∂i(0, t − z′/v)
∂t

− dP (z′)
dz′

i(0, t − z′/v), t ≥ z′/v (31)

On the other hand, the actual corona current for LS models
is given by (18). It appears from comparison of (18) and (31)
that the actual corona current is equal to the second term of
(31), with the first term of (31) being a fictitious corona current
component. However, note that, according to Fig. 2, different
sign conventions for the corona current are used in LS and
DS models. For the LS models, corona current flowing out
of the channel core is defined as positive, while for the DS
models, positive corona current flows into the core. Therefore,
the second term of (31) and the right-hand side of (18) have equal
magnitudes but opposite signs. It appears that in converting
the LS models to DS models one needs to cancel the actual
corona current and introduce a new, fictitious one. Although
the directions of propagation of the actual corona current in
the LS and DS models are opposite, charge of the same sign
is effectively transported into the channel core in both types of
models. Applying (31) to the TL, MTLL, and MTLE models
one can derive equivalent corona currents given by (5a)–(5c).

Similarly, one can derive equivalent corona currents for DS
models converted to equivalent LS models. We have done so
in Section IV for the DU, TCS, and BG models. The resul-
tant equivalent corona currents given by (23), (26), and (29)
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TABLE I
ACTUAL AND EQUIVALENT CORONA CURRENTS PER UNIT CHANNEL LENGTH, i′cor(z

′, t), FOR TWO FORMULATIONS OF LS MODELS (t ≥ z′/v).

are different from actual corona currents in these models that
are given by (2), (3), and by (3) with c replaced by ∞ in the
expression for v∗, respectively. Interestingly, for the DU model,
the equivalent corona current involves the actual corona current,
similar to the LS models converted to DS ones.

Using the concept of equivalent corona current, LS models
can be converted to DS models, and DS models can be converted
to LS models. This property of engineering return stroke models
can be viewed as duality. Both equivalent and actual corona
currents for LS and DS models are summarized in Tables I and II,
respectively. It is important to note that the equivalent corona
current in Tables I and II should be negated in order to make it
directly comparable to the actual corona current. Thus, it follows
from Table I that the equivalent corona current for LS models
converted to DS models is the sum of the negated actual corona
current and an additional, fictitious corona current. This is also
true for the DU model (see Table II). The equivalent corona
current for LS models converted to DS models is based on
(1), and that for DS models converted to LS models is based on
(17). Interestingly, the magnitude of the fictitious corona current
per unit length for either LS or DS models can be expressed
as (∂i/∂t)/v∗, where i is the longitudinal current, and v∗ =
(1/v + 1/c)−1, although for the DS models, the longitudinal-
current derivative should be negated.

As noted above, the equivalent corona current is totally or in
part fictitious current. For example, there exists only fictitious
bipolar corona current in the TL model when it is converted
to equivalent DS model. Physically, no radial corona current is
expected to exist in the TL model, because the deposited charge-
density component for this model is equal to zero. In the MTLL

and MTLE models, the equivalent corona current consists of
the negated actual corona current and a fictitious corona cur-
rent. The longitudinal current, equivalent corona current, and
individual corona current components for the TL, MTLL, and
MTLE models converted to equivalent DS models are illustrated
in Fig. 3(a) –(c).

Note that the shape of the actual corona current component
is unipolar and the same as that of the longitudinal current i
while the fictitious corona current component is a narrow bipolar
pulse, which is given, as noted above, by (∂i/∂t)/v∗. The peak
value of the fictitious corona current component in the converted
MTLL and MTLE models is much larger than that of the actual
corona current component.

Only the actual corona current is related to the deposited
charge density component given by (19). This can be shown by
taking the time integral of the equivalent corona current given
by (31) from 0 to t and comparing the result with (19). Indeed

∫ t

z′/v

i′cor(z
′, τ) dτ =P (z′)

(
1
v

+
1
c

)∫ t

z′/v

∂i(0, t − z′/v)
∂τ

dτ

− dP (z′)
dz′

∫ t

z′/v

i(0, τ − z′/v) dτ (32)

that is∫ t

z′/v

i′cor(z
′, τ) dτ = P (z′)

(
1
v

+
1
c

)
[i(0, t − z′/v)−i(0, 0)]

− dP (z′)
dz′

∫ t

z′/v

i(0, τ − z′/v) dτ . (33)
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TABLE II
ACTUAL AND EQUIVALENT CORONA CURRENTS PER UNIT CHANNEL LENGTH, i′cor(z

′, t), FOR TWO FORMULATIONS OF DS MODELS

Assuming that i(0, 0) = 0 yields∫ t

z′/v

i′cor(z
′, τ) dτ =

P (z′)i(0, t− z′/v)
v

+
P (z′)i(0, t− z′/v)

c

− dP (z′)
dz′

∫ t

z′/v

i(0, τ − z′/v) dτ . (34)

Clearly, the first two terms (which are due to the fictitious
corona current component) on the right-hand side of (34) do not
exist in (19), with the third term being the deposited charge-
density component introduced in [12]. In other words, the first
two terms of (34) are not related to the charge deposited in
the corona sheath; only the third term is. The fictitious corona
current appears to be related to the difference between the trans-
ferred (as opposed to deposited) charge densities at the two ends
of the differential channel segment, regardless of physical rea-
sons for this difference. In the TL model, this difference has
nothing to do with the physical corona-current flow from (or
into) the channel core.

Similarly, equivalent corona currents for DS models con-
verted to LS models are different from the actual corona currents
derived for the DS models from (1). In the DU model, the equiv-
alent corona current consists of the negated actual and fictitious
corona current components, while for the TCS and BG models,
equations for the equivalent corona current apparently do not

involve the actual corona current. The longitudinal current and
equivalent corona current for the DU, TCS, and BG models (also
the individual corona current components for the DU model) are
illustrated in Fig. 4(a)–(c). As opposed to LS models converted
to DS models, for the DU model converted to the equivalent
LS model, the two corona-current components initially have
opposite direction and the same magnitudes at time t = z′/v.
Note that actual corona currents in the TCS and BG models in-
volve delta functions, whereas equivalent corona currents (after
conversion of these models to equivalent LS models) do not.

Equivalent corona currents defined above, although different
from actual corona currents can be used for formal conversion
between LS and DS models, since distributions of the longi-
tudinal current and the total charge density along the channel
before and after conversion remain the same. This can be
viewed as a manifestation of duality of engineering lightning
return-stroke models. Conversion of LS models to DS models
is particularly useful in extending the model to include a tall
strike object, as done in [5].

VI. SUMMARY

We show that any engineering return-stroke model can be
expressed using an appropriate continuity equation in terms of
either lumped or distributed current sources, with the resultant
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Fig. 3. Longitudinal current (first row) and negated actual (second row), fictitious (third row), and equivalent (fourth row) corona currents per unit-length as a
function of time at three different heights—100, 1500, and 3000 m—for (a) TL, (b) MTLL, and (c) MTLE models (H = 7500 m, λ = 2000 m, v = 130 m/µs.)
converted to equivalent DS models. Positive (into the core) equivalent corona current peaks are clipped to accentuate negative (out of the core) overshoots. For the
converted TL model, the equivalent corona current is the same as the fictitious corona current but shown with a different vertical resolution. Channel base current
used here is the same as that adapted in [14] and is characterized by a current peak of 12 kA and a maximum current rate of rise of about 40 kA/µs.

longitudinal current and total charge density distributions along
the channel being the same. This property can be viewed as
the duality of engineering models. Conversion of LS models to
equivalent distributed source models was previously demon-
strated by Rachidi and Nucci [2], Cooray [1], and Rachidi

et al. [5]. The conversion alters the actual corona current (if
any) of the model. For LS models, the actual corona current is
unipolar and directed radially out of the channel core, while for
DS models, it is unipolar and directed into the channel core.
For LS models converted to DS models and for the DU model
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Fig. 4. (a) Longitudinal current, negated actual, fictitious, and equivalent corona currents per unit channel length as a function of time at three different heights—
100, 1500, and 3000 m— for the DU model converted to equivalent LS model (v = 130 m/µs, τD = 0.6 µs). (b) and (c) Longitudinal current and equivalent
corona current per unit channel length for the TCS and BG models converted to equivalent LS models, respectively. Equivalent corona current in the converted
TCS and BG models are equal to the corresponding fictitious corona currents. The actual corona currents in the TCS and BG models involve delta functions and
are not shown here. Positive corona current flows out of the channel core. Channel base current used here is the same as that adopted in [14].

converted to the equivalent LS model, the corona current is the
sum of the negated actual corona current and a fictitious corona
current, the latter being bipolar. It appears that in converting
these models, one needs to cancel the actual corona current (re-

lated to the deposited charge density component) and introduce
a new, fictitious one. For the TL model (no longitudinal-current
attenuation with height, and hence, no deposited charge-density
component) expressed in terms of DSs, there is only a fictitious
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bipolar corona current component. The fictitious corona current
appears to be related to the difference between the transferred
(as opposed to deposited) charge densities at the two ends of the
differential channel segment, regardless of physical reasons for
this difference. In the TL model, this difference has nothing to
do with the physical corona current flow from (or into) the chan-
nel core. Conversion of the TCS and BG models to equivalent
LS models involves replacement of the actual, unipolar corona
current with a fictitious one, the latter current being bipolar near
the channel base and unipolar at higher altitudes.
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