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Distribution of charge along the lightning channel: Relation to
remote electric and magnetic fields and to return-stroke models
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Abstract: We derive exact expressions for remote electric and magnetic fields as a function of
the time- and height-varying charge density on the lightning channel for both leader and return-
stroke processes. Further, we determine the charge density distributions for six return-stroke
models. The charge density during the return-stroke process is expressed as the sum of two
components, one component being associated with the return-stroke charge transferred through a
given channel section and the other component with the charge deposited by the return stroke on
this channel section. After the return-stroke process has been completed, the total charge density
on the channel is equal to the deposited charge density component. The charge density
distribution along the channel corresponding to the original transmission line (TL) model has
only a transferred charge density component so that the charge density is everywhere zero after
the wave has traversed the channel. For the Bruce-Golde (BG) model there is no transferred,
only a deposited, charge density component. The total charge density distribution for the version
of the modified transmission line model that is characterized by an exponential current decay
with height (MTLE) is unrealistically skewed toward the bottom of the channel, as evidenced by
field calculations using this distribution that yield (1) a large electric field ramp at ranges of the
order of some tens of meters not observed in the measured electric fields from triggered-lightning
return strokes and (2) a ratio of leader-to-return-stroke electric field at far distances that is about
3 times larger than typically observed. The BG model, the traveling current source (TCS) model,
the version of the modified transmission line model that is characterized by a linear current decay
with height (MTLL), and the Diendorfer-Uman (DU) model appear to be consistent with the
available experimental data on very close electric fields from triggered-lightning return strokes
and predict a distant leader-to-return-stroke electric field ratio not far from unity, in keeping with
the observations. In the TCS and DU models the distribution of total charge density along the -
channel during the return-stroke process is influenced by the inherent assumption that the current
reflection coefficient at ground is equal to zero, the latter condition being invalid for the case of a

lightning strike to a well-grounded object where an appreciable reflection is expected from

ground.

Introduction

If the spatial and temporal distribution of either the current
or the charge density along the lightning channel is known, the
electromagnetic fields at any distance from the channel can be
uniquely calculated from Maxwell's equations. Expressions
relating the current distribution along a straight vertical
lightning channel to the remote electric and magnetic fields
have been derived by Uman et al. [1975] and are now
commonly found in the literature [e.g., Lin et al., 1980; Uman,
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1987; Nucci et al., 1990]. Here we derive similar general
expressions relating the spatial and temporal distribution of
charge density along the channel to the remote electric and
magnetic fields. The equivalence between the expressions for
the fields as a function of the channel current, traditionally
applied to the lightning return stroke [e.g., Lin et al., 1980;
Uman, 1987, Nucci et al., 1990], and the fields as a function of
the charge density, traditionally applied in the "static"
approximation to the lightning stepped and dart leader
processes [e.g., Schonland et al., 1938, Uman, 1987,
Rubinstein et al., 1995] is demonstrated. Additionally, we
present an expression for the electrostatic field produced by a
descending lightning leader in terms of both height- and time-
varying charge density and compare this rigorous solution to
the time-independent electrostatic approximation proposed by
Thomson [1985]. It is important to note that the field equations
in terms of charge density for the leader and return stroke can
potentially be used for studying the link between these two
processes. This is so because both the leader and return-stroke
processes act on the same charge density (the return stroke
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transports the leader charge from the channel to ground), while
currents associated with the two processes differ by an order of
magnitude or so. The traditional return-stroke field equations
in terms of channel current and leader field equations in terms
of charge density serve to isolate the leader and return-stroke
processes that are undoubtedly coupled. Further, we examine
charge density distributions along the lightning channel
associated with six return-stroke models, namely, the Bruce-
Golde (BG), the transmission line (TL), two versions of the
modified transmission line (the MTLL with a linear decay of
current with height and the MTLE with an exponential decay),
the traveling current source (TCS), and the Diendorfer-Uman
(DU), and compare our results with those published by Nucci
et al. [1990]. Finally, we test the validity of the charge density
distributions associated with various models (and hence the
validity of the models) using published data on close and
distant lightning electric fields.

Theory, Analysis, and Discussion

Expressions for the Lightning Electric and Magnetic Fields
in Terms of the Channel Charge Density

General. The differential vertical electric field dE, and the
azimuthal magnetic field dB, at ground level due to a vertical,
current—carrying channel element of differential length dz’ at
height z' above a perfectly conducting Earth and at horizontal
distance r from the observation point can be expressed in terms
of current as [e.g., Uman, 1987]
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where #£,(2") is the time at which the current is "seen" by an
observer at P to begin in the channel section at height z’ (see
Figure 1), ¢ is the speed of light in vacuum, and
R(z") = (z*+r*)*. The total fields are found by integrating (1)
and (2) over the contributing channel length. Two particularly
useful specific applications of the general fields (1) and (2) are
to the case of return stroke propagating upward from ground
level and the case of a leader process propagating downward

from a spherically symmetrical cloud charge source. Using the

continuity equation relating the current and charge density, we
can express, as shown in Appendix B, the electric and magnetic
fields of the return-stroke and leader processes as a function of
the channel charge per unit length (line charge density) p,(z",9).
In the following, using the material in Appendix B, we
introduce equations written as a function of the line charge
density for the total electric and magnetic fields of the return
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stroke and for the electrostatic and magnetostatic fields of the
leader, with the total leader fields being found in Appendix B.

Return stroke. The retumn stroke is assumed to create an
extending channel whose lower end is fixed at ground and
whose upper end is associated with the return-stroke front that
moves from ground (z’' = 0) upward with a constant speed v.
The observer at P "sees" the return-stroke front passing a height
z' at time #,(z"y=z'’v + R(z")/c (see Figure la). Thus the
"radiating” length H(f) of the channel, that is, the length
traversed by the upward moving front as "seen” by the observer
at time ¢, is given by the solution of

HW , H@+r)"”

t= + &)}
v c

For the case where there is no current discontinuity at the
return- stroke front, the total electric and magnetic fields are
obtained by integrating the differential electric and magnetic
fields along the channel from 0 to H(?), as described in section
B4 of Appendix B,
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Figure 1a. Geometry used in deriving the expressions for
electric and magnetic fields at a point P on Earth a horizontal
distance 7 from the vertical lightning return-stroke channel
extending upward with speed v.
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The electrostatic field component is represented by the first
term of (4), the induction electric field component by the second
and fourth terms and the radiation electric field component by
the third and fifth terms. The magnetostatic field and radiation
magnetic field components -are represented by the first and
third, and the second and fourth terms of (5), respectively. Note
that in (4) and (5) there are two terms for the induction and for
the radiation components rather than the one term found in the
equivalent formulations (see, for instance, discussion of (7.3)
and (7.4) of Uman [1987]) in terms of channel current. If there
1s a current discontinuity at the return-stroke front, the electric
and magpetic fields due to the discontinuity given by (B31) and
(B32), derived in section B5 of Appendix B, should be added
to (4) and (5), respectively, bringing to three the number of
terms for each of the radiation field components in the charge
formulations.

In the case that the retum-stroke speed is an arbitrary
function of height, (4) and (5) are valid if the constant speed v
is replaced by the "average" speed defined by Thottappillil et al.

1991].

[ We computed electric and magnetic fields at distances of
0.05, 1, and 100 km using (4) and (5) with (B31) and (B32)
when applicable for the six return-stroke models described in
section 2 below. As expected, the results were found to be
identical to those obtained using the traditional field
formulations [e.g., Uman, 1987, Equations (7.3) and (7.4)] in
terms of channel current.

Leader. The leader is assumed to create a channel
extending vertically downward with a constant speed v from a
stationary and spherically symmetrical charge source at height
H,, (see Figure 1b). Attime ¢, the observer "sees" the lower end
of the leader channel at a height h(f) given by the solution of

- H_-h(1) . Vh(H)+r? ©)
v c

The total leader electric and magnetic fields can be found by
integrating the corresponding differential fields from A() to H,,
including those of the charge source at H,, as described in
section B6 of Appendix B, and are given by (B38) and (B39),
respectively.
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Figure 1b. Geometry used in deriving the expressions for
electric and magnetic fields at a point P on Earth a horizontal
distance r from the vertical lightning leader channel extending
downward with speed v.

Actual position of
leader tip

Here, as an example of the application of the leader field
expressions in terms of charge density, we consider the
electrostatic approximation for the leader electric field and
magnetostatic approximation for the leader magnetic field, the
approximations expected to be applicable to close lightning,
Retaining only the first and fourth terms in (B38), we get
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where R(H,)=(H,+r*)* (see Figure 1b). The first term of (7)
represents the field change due to the charge on the leader
channel, and the second term represents the field change due to
the depletion of the charge at the cloud charge source as it is
drained by the extending leader channel. The total charge on
the leader channel at any time is equal to the total charge
drained by that time from the cloud charge source. If the
maximum difference in propagation times from sources on the
channel to the observer is much less than the time required for
significant variation in the sources, we can rewrite (7) as

z/ H, 'Ddz!
3(2’) - R3(Hm) L(z ’t) (8)
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where z=H,-vt is the height of the leader tip at time fand v is
the leader speed, assumed to be a constant. Thomson [1985]
has derived a similar equation (his equation (5)) based on
Coulomb's law, although he assumes that the charge density
distribution on the leader channel behind leader tip does not
vary with time. Thomson's assumption is equivalent to the
assumption of a uniform current in the channel between the
cloud charge source and leader tip, as follows from the
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continuity equation (A5b). In this respect, Thomson's leader
model is similar to the BG model for return strokes, while (8)
permits any other (e.g., a TCS type) leader model.

The magnetostatic approximation for the leader magnetic
field is obtained from (B39) by neglecting the second, fifth, and
sixth terms associated with the radiation field
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Neglecting retardation effects, applying the Leibnitz's formula
given by (BS) to the second term, replacing A(f) by z, and
dh(#)/dt by v, the constant leader speed, and rearranging the
terms, we can simplify (9) as
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Assuming that the leader charge density behind the leader
tip does not vary with time (8p ,(z',#)/3t = 0), the approximation
used by Thomson [1985], noting that p,(z, ,t) v = - i(z, ,t), that
&= (g, and that the continuity equation behind the leader
tip requires 9i(z’,£)/0z ‘= 0 if dp,(z’,f)/ot =0, we get forz,= 0

(a fully developed leader channel),
H H H
Blrm| - to T g m an
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Equation (11) is the familiar expression [e.g., Uman, 1987] for
the magnetostatic field of a vertical current-carrying line the
bottom end of which is at ground and the top end is at height
H,_, Ifthe observation point is very close to the channel base so
that r << H,, (11) can be further simplified to give

HJH V)

/v =
B(rH_ ) Y-

a12)

which is the same equation as that for an infinitely long current-
carrying line [e.g., Sadiku, 1994].
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Charge Distributions Along the Lightning Channel
for Six Return-Stroke Models
and Validation of the Models

General: Continuity equation applied to return strokes.
The charge density at any height z’' on a straight vertical
lightning channel at any time ' is given in Appendix A by
(A8), which is reproduced in (13) with ¢ replaced by ¢,

iz'z /v) f at(z 'r) &

P = 13)

'y

It will be shown later by applying (13) to different return-
stroke models, that in general the total charge density can be
decomposed into two components, one being associated with
the return-stroke charge transferred through a given channel
section (a component that vanishes after the return stroke has
been completed), and the other being associated with the charge
deposited by the return stroke on this channel section (a
nonzero component both during and after the return stroke). In
the special cases of the TL and BG models one of the two
components is absent at all times. The first term of (13)
represents only the deposited charge density component, while
the second term can contribute to both transferred and deposited
charge density components.

Applying Leibnitz's formula to (13) we obtain,

PG = - f i@’ vt
'y

_ doE'y
dz /
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where O(z,§) is the charge in the channel section at height 2’ at
time ¢. Equation (14), and hence (13), is equivalent to (3) of
Nucci et al. [1990, p. 20,398] who used it to determine "the
charge removed from the leader channel by the return stroke”
up to time # for various return-stroke models. It will be shown
below that (13) determines the total charge density which is not
necessarily equal in magnitude to the charge "removed" from
the channel. The sign convention throughout this paper is that
the return-stroke current which transports positive charge
upward (or negative charge downward) is positive.

It is important to note that the charge density expressions
derived in this section must be modified to take into account
retardation effects if they are to be used in (4) and (5) for
finding the remote electric and magnetic fields. To find the
retarded charge densities (charge densities "seen" by the
observer) from retarded currents for the various return stroke
models, (B4) must be used instead of (13).

Since z'/v is the time for the return stroke front to reach
height z’, the first term of (13) is nonzero only if there is a
current discontinuity at the front, an inherent feature of the BG
and TCS models. The second term becomes zero if there is no
current variation along the channel, as is the case for the BG
model.

In the following, using (13), we examine the charge density,
as a function of both time and height, predicted by six retumn-
stroke models. A comparison with the results of a similar study
presented by Nucci et al. [1990] is made for the models
examined both here and by them. Additionally, we test the
validity of the charge distributions associated with various
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models using the published experimental data on electric field
waveforms produced by very close triggered-lightning return
strokes and on leader-to-return-stroke electric field change
ratios for natural-lightning return strokes at far ranges.

Transmission line type models. For models of the
transmission-line type [Uman and McLain, 1969, Rakov and
Dulzon, 1987, Nucci et al., 1988] current as a function of z’ and
t is expressed by Rakov and Dulzon [1991] as

iz’ ) = PEhi0,t-z'v) as)

where P(2') is an arbitrary spatial attenuation function for the
upward propagating current wave. For the original
transmission line model [Uman and McLain, 1969], P(z)=1.
If we take the spatial derivative of (15) with t replaced by t, we
obtain
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Converting the spatial derivative of current to the time
derivative of current via the chain rule, we get
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Substituting (18) and (19) in (13), and simplifying, we find,
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Note that the term associated with the return-stroke front (the
first term of (13)) drops out of the equation, so that (20) is valid
regardless of whether or not there is a current discontinuity, that
is, i(0,0) # 0, at the return-stroke front. Both terms of (20)
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resulted from the second term of (13). The first term of (20)
represents the charge density associated with the propagating
current wave. An increase of speed causes a decrease of this
component of charge density. The second term of (20) is
associated with the variation of current amplitude with height
as specified by the attenuation function P(z’). Without
attenuation, that is, P(z)=1 as in the original TL model, there
is no current amplitude variation with height, and the second
term becomes zero. When the current decays to zero over the
entire channel, the first term of (20) is zero, and the second term
equals the charge per unit length absorbed by the channel
(spent by the retum stroke in neutralizing the charge previously
stored on the channel by the leader). The negative of the charge
absorbed by the channel may be viewed as the leader charge
removed from the channel. One can visualize the first term of
(20) as being associated with the return-stroke charge
transferred through a given channel section upward and the
second term as being due to charge deposited by the return
stroke on this channel section. We will use the concept of
"transferred" (nonzero only when the current flows) and
"deposited” (nonzero both when the current flows and after the
current ceases to flow) return-stroke charge for the BG, TCS,
and DU models as well (see Table 1). Note that in the simplest
models, TL and BG, one of the two charge density components
is absent at all times. Nucci et al. [1990] presented equations
for the deposited charge density component for the BG, TCS,
and MTLE return-stroke models.

Case 1 (TL): P(z") = 1 [Uman and McLain, 1969]: The
current wave suffers no distortion and no attenuation while
propagating along the channel,

iZ'H = i(0,t-z'v) 1)

Using (20), we find

i0,t-z')
v

Pz = 22

When current ceases to flow in all channel sections of interest
p(z",0)=0; that is, there is no deposited charge in this model.
As a result, there is no charge density equation given by Nucci
et al. [1990] for the TL model.

Case 2 (MTLL): P(z’) = 1-z'/H [Rakov and Dulzon,
1987]: The current wave suffers no distortion, but its amplitude
decays linearly with height,

i = ( 1 —%/] i0,t-z'Mv) 23)

where H is the total length of the channel. This model was
developed assuming a uniform distribution of leader charge
along the channel as shown by Rakov and Dulzon [1991] and
confirmed below. Using (20), we obtain
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At a time when the current along the entire channel decays to
zero, the first term, representing transferred charge, of (24)
becomes zero and the second term, representing deposited
charge, approaches a constant value, corresponding to a
uniform distribution of return-stroke charge absorbed by the
channel, which implies a uniform distribution of the leader
charge previously stored on the channel (assuming that the
return stroke neutralizes all leader charge in the channel).

Case 3 (MTLE): P(z) = €*™ [Nucci et al., 1988]: Similar
to case 2, but with an exponential decay of current amplitude
with height,

iz'h) = e *"™i0,1-z') 25)

where A is the current decay constant (assumed by Nucci et al.,
[1990] to be 2000 m). Using (20), we obtain,

= i0L-Z'M) e '
A

o, = oe'y  (26)

The first term of (26) represents transferred charge and the
second term, given also by (18) of Nucci et al. [1990],
represents the return-stroke charge deposited on the channel.
As the current along the entire channel ceases to flow, the first
term of (26) becomes zero, and Q(z',f) approaches a constant
value, resulting in an exponential distribution of charge density
along the lightning channel with its maximum at ground level.

Bruce-Golde model [Bruce and Golde, 1941). In this
model at any instant of time, a uniform current is assumed to
exist in the channel between ground and the return stroke front.
For a uniform current to flow along the channel the continuity
equation (ASb) requires a time-independent charge density, a
feature shown to be the case below. This model can be viewed
as a special case of the traveling current source model,
discussed below, when c is replaced by .

For the BG model,

i'h) = i(0.9) 27
Thus
diz';t) _ 0i(0,1) _
P (8
vl o) )
iz'z'h) _ i0zh) 29)
v v
Substituting (28) and (29) in (13), we obtain
pL(z/’[) = M 30)
v

which represents the return-stroke charge deposited on the
channel by the moving front. There is no transferred charge in
the BG model. As a result, (30) is the same as the equation
given for the BG model by Nucci et al. [1990]. The charge
density distribution versus height along the channel for the BG
model has the same shape as the current versus time at ground
level.
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Traveling current source model [Heidler, 1985). In this
model the current is assumed to be generated at the upward
moving return-stroke front and to propagate to ground at the
speed of light. Current at the front turns on instantaneously.
As opposed to the transmission line type models, this model (as
well as the DU model discussed below) requires an assumption
on the conditions at the attachment point between the lightning
channel and ground. Heidler [1985] assumes that there is no
impedance discontinuity at the attachment point.

For the TCS model,

i'0 = i0,t+z'lc) (€3 ))
Then
diz',v) _ 0i(0,3+z'le) a(x+z'le)
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Substituting (32) and (33) in (13), we find
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where v = v/(1 + v/c) is the apparent speed of the front. The
first term, representing transferred charge, is associated with
the downward propagating current wave, while the second term
is due to the upward-moving front and represents the retumn-
stroke charge deposited on the channel (different signs signify
the different propagation directions; current in both terms is
positive according to the sign convention stated above). If ¢ is
replaced by «, the transferred charge density component is
equal to zero and the TCS model reduces to the BG model. The
second term of (34) is also given by (15) of Nucci et al. [1990]
Note that at the front p,(z’, z2’'/V) = i(0,2'/V*)/v, as evident from
the second form of the right-hand side of (34), and is always
positive (to neutralize the negitive leader charge), while at
ground (z' = 0) p,(0,0) = -i(0,f)/c and is always negative. The
latter statement is only true if there is no discontinuity at £ =0
in the channel-base current; otherwise, the charge density at
ground has an additional (positive) component, i(0,0)//", due to
that discontinuity. If i(0,0) = 0, then the distribution of the
charge density along the channel for the TCS model is bipolar
during the return-stroke process. After the return stroke is
complete (f ~ «) the charge density at ground level is zero, as
for the BG model. The presence of appreciable negative charge
at the channel base during the return stroke, p,(0,#) = -i(0,f)/c,
follows from the assumed form of the current in the TCS model
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which implies that the reflection coefficient for current at
ground is equal to zero; that is, the rate of removal of the charge
from the channel bottom is equal to the rate of supply of charge
to the bottom from the upper channel sections. This
assumption is clearly invalid for well-grounded objects for
which one expects a voltage reflection coefficient at ground
close to -1; in this case, the charge density at ground would be
forced to be close to zero at all times while the current,
experiencing a reflection coefficient of +1 or so, should double.
Heidler and Hopf [1994] attempted to modify the TCS model
to take into account the wave reflections at ground and at the
upward moving front, but in doing so they could not use the
channel-base current as an input to the model and had to
arbitrarily specify the traveling-current-source current instead.
Thus, the original TCS model appears to be unrealistic (unless
the grounding impedance at the strike point is comparable to
the lightning channel impedance), whereas the modified TCS
model of Heidler and Hopf [1994] with ground and front
reflections does not belong to the family of models with
specified channel-base current discussed here.

Comparison to Nucci et al [1990]. The equations for
charge density given by Nucci et al. [1990] for the MTLE and
TCS models represent only the deposited charge density
component and therefore cannot generally be used for
calculating electric and magnetic fields. The total charge
density for the MTLE and TCS models is given by,
respectively, (26) and (34) above. Further, as noted earlier, in
the TL model the charge on the channel is never zero during the
return-stroke process. It is only zero after all current has ceased
to flow in the channel. The distribution of charge density
during the return-stroke process for the TL model is given by

300 T T T T T T

t = 100 us

250

200

150

100

Charge Density (uC/m)

50

Height (km)

Figure 2. Calculated total charge density distributions for six
return-stroke models at # =100 ps. These distributions should
be compared with the deposited charge density distributions
given in Figure 7 of Nucci et al. [1990]. The current waveform
shown in Figure 4a of Nucci et al. [1990] is assumed at ground
level for all models. The speed of the return stroke is 1.3x10°
m/s. The current decay constant A for the MTLE model is 2
km, and the total length H of the lightning channel for the
MTLL model is 7.5 km. The discharge time constant for the
DU model is 0.1 ps.
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(22) of this paper. Figure 2 (to be compared with Figure 7 of
Nucci et al.) shows the total charge density p,(z'.f), as
determined by (22), (26), (30), and (34) at £=100 ps using the
current at the channel base adopted by Nucci et al. [1990,
Figure 4a]. Additionally shown in Fig. 2 are p,(z’,#) for two
models not considered by Nucci et al.: the MTLL model
(equation (24)) and the Diendorfer-Uman model discussed
next. Note that Nucci et al. [1990] did not use their incomplete
(except for the BG model) charge density equations to calculate
fields; they used field equations written in terms of channel
current instead.

Diendorfer-Uman model [Diendorfer and Uman, 1990].
This model is similar to the TCS model, but current at the
return-stroke front turns on exponentially with a time constant
T, According to the DU model,

/ /
iz = i04+2'lc) -i(0, 2+ )e MV
voe 35)
= i\@'D-i "0

If ©, = 0 the DU model reduces to the TCS model, and if, in
addition to that, c is replaced by « we get the BG model. The
line charge density associated with the first component of
current in (35), i,(2",0), is the same as that for the TCS model
and is given by (34). For the second component of current in

(35),
aiz(z /’T) _ o |. o, Ei N Z_, Ye (-2,
oz' 'l v ¢

1l 36)
. 0i(0,%-+2)
- __l__’.(0 2’z )+ Vv ¢ | ~(t-z'myr,
Vi, v ¢ oz’

Further, setting ¢ = 2'/v in the second component of current in
(35), we find that

/ /
. i(0,2-+Z-
12(2/,2//\’) ) ’( > v + c) (37)

v v

Defining *(z") = z/v + z'/c to be used in (36) and (37) and

substituting (36) and (37) in (13), we obtain, the line charge
density associated with i,(z’,5)

i[0,t* y ~(z-z'mir,
0,20 = il tv(Z’)]_fe (s
'
3%
N IR P P ) ')]lﬁ
WD aZ/

Although £'(z') is not a function of T, which is an arbitrary time
between the limits z'/v and ¢, we can write £'(z")= t-k, where k
is a constant [Diendorfer and Uman, 1990]. Then,
Ai0.L° @ _ 1 8i[0,t*EN]
oz' vt ot

39
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where V' is same as in the TCS model above. Substituting (39)
in (38) and evaluating the integral, we find,

Pz(zl’t) = i[O,f'(Z')] __1_

v Vi,
e ~(e-z'myip |
0t N——
-1, by

t
1 .8i0* @ T
v ot - l/TD

(40)

z'lv

= el 0, D))
v

, D di0t M| T 6i0,1* ")
v* ot v ot
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Combining (40) and (34) and noting that *(z') = z'/*, we
obtain the total charge density for the DU model as

. /

o,z Ip=- i(0,t+2'/c) e ~(t-z'yy,

i0,z'v*) o di0z'v)
v v* dt

.

“n

o ’ *
i0z'h") + rD__—_d'(O’;"’ )

1
+ —
vl

At the front, p,(z’,2’/¥) = 0, similar to the transmission line
type models (provided that there is no discontinuity at =0 in
the channel-base current) but in contrast with the BG and TCS
models. At ground, the charge density depends on the time
derivative of the channel-base current at # = 0, being identical
to the charge density for the TCS model if this derivative is
equal to zero. Discussion regarding the implicit assumption in
the TCS model that the current reflection coefficient at ground

Table 1. Charge Density at Height z' at Time ¢ for Various Lightning Retumn-Stroke Models

pL(z l:l)
Return-Stroke [ (A
Model Transferred Deposited
Charge Density Charge Density
Component Component
TL i0,t-z') - -
v
MITLL 1- 2| i0,t-z'iv) oc'n Q0,429
H v H H
In i ) -z,
MTLE -+ i0,t-2'v) e @' (0,19
v A A
BG - i(0z'v) 0
1%
TCS _i(0,t+z'/c) i0z'v*) 0
c v*
DU _i0,t+2'lc) ¢ T i0z'm*) , o diQ0z '*) Tp di(0,0)
C v v dt v dt

|02V o di0z'v?)
v v dt

TL, transmission line; MTLL, modified transmission line with linear current decay; MTLE, modified transmission line with
exponential current decay; BG, Bruce-Golde; TCS, traveling current source; DU, Diendorfer-Uman. In general, the transferred
charge density component is non-zero only when the current flows, while the deposited charge density component is non-zero
also after the current ceases to flow. The total charge density is the sum of the transferred charge and deposited charge density
components. In the simplest return-stroke models, TL and BG, one of the charge density components is absent at all times. In
the last column, p;(0,f;) is the total return-stroke charge density at the channel termination on the ground at ¢ = #z¢ (and
afterwards), where #x((fzs >> Tp) is the time when the return-stroke current ceases to flow in all channel sections of interest.
For the BG, TCS, and DU models p,(0,s) is given for the case of i(0,0) = 0.
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is equal to zero applies to the DU model as well. After a
sufficiently long time (f-) the current in the channel ceases to
flow and the first three terms in (41), representing the
transferred charge, become zero so that

. 11, *
102y o5, d02"R)]
T ar |

.DL(Z Ist) = .
\4

Equation (42) represents the charge deposited on the channel by
the return-stroke process and is identical to (Al 3b) of
Dtendorﬁr and Uman [1990] except for the oppos1tc sign, the
disparity being due to different sign conventions for current.

The charge densnty distribution for the DU model at =100 ps
obtained using (41), 1,= 0.1 ps, and the channel-base current

a2 uSS LY L-LU R ALt

adopted by Nucc: et al [1990] is presented in Figure 2.
Validation of return-stroke models using published

experimental data. Expressions for the charge density as a

function of height and time for the six retum-stroke models are

se Takla nevd lliintentad S arienc 2o omd 2L
ouuu.luuu.w giiy Tablc } nud uu.lbua‘l'nu ui I‘lsulcb Jn alu JU
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Note that the representation of the return-stroke models in terms
of charge density is equivalent to the more traditional
representation in terms of channel current. For the TL model
the total charge density distn'bution along the channel is the

same as that of the uuvcuug current wave \bﬂc rlgurc 3a) ).

Thus, at times greater than the risetime of the wave the TL
model is associated with a progressive decrease of charge at the
bottom of the channel. As a result, at distances of the order of
some kilometers this model allows the reproduction of only the
first few tens of microseconds of the characteristic electric field
ramp observed in the experimental data to last for a hundred of
microseconds or more [e.g., Uman, 1987), after which the
model-predicted field decreases, as shown by Nucci et al.
{1990, Figure 12]. In the TL model, as distance decreases, the
ramp ends and an "abnormal” decrease of the field starts earlier,

after a few microseconds at 50 m (see Figure 4), It annears that

the TL model is not a realistic model for calculating lightning
electric fields at times greater than some tens of microseconds
at distances of the order of some kilometers and after only a few
microseconds at distances of the order of tens of meters from
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Figure 3a. Distributions of the return-stroke charge density (the total charge density and the deposited and
transferred charge density components) versus height along the channel at different times for six return-stroke

models.
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At times of the order of 100 ps (see Figure 2), the MTLE
model has a total charge density near ground 2 to 3 times
higher than that predicted by the MTLL, BG, TCS, and DU
models. This disparity translates into an appreciable difference
in the model-predicted return-stroke electric field at very close
range and in the ratio of the leader-to-return-stroke electric field
change at far range, differences which can be used in model
validation. Indeed, as seen in Figure 4, at 50 m, the MTLE
model predicts a large electric field ramp lasting for many tens
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Figure 3a. (continued)

of microseconds or longer while for the other models (except for
the TL model) the electric field shows little variation after 10 ps
or so following the initial relatively fast transition. The
measured return-stroke electric fields at 50 m (also at 30 m and
110 m) from triggered lightning, examples of which are shown
in Figure 5, adapted from Uman et al. [1994], exhibit flattening
within the first 10 ps or so, contrary to the prediction of the
MTLE model but in support of the other models (except for the
TL model) considered here. Note that at distances greater than
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Figure 3b. Distributions of the return-stroke charge density (the total charge density and the deposited and

transferred charge density components) versus time

at different heights on the channel for six return-stroke models.
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Figure 3b. (continued)

a few kilometers the initial (predominantly radiation) electric
field peak is reasonably reproduced by all the retum-stroke
models considered here, as demonstrated by Thottappillil and
Uman [1993].

Further, using (8) with z, = 0 and the first term of (4) we
calculated the ratio of leader-to-return-stroke electric field as a
function of distance as predicted by MTLL, MTLE, BG, TCS,
and DU models (see Table 2). For H=7.5 km and for ranges
less than 1 km or so, all the models predict essentially the same
ratio, whereas at ranges of 20 km or greater there is a
considerable difference in the ratio predicted by the MTLE
model and all the other models. At 100 km the MTLE ratio is
2 to 3 times greater than that for the MTLL, BG, TCS, and DU
models. For H =5 km and A = 10 km the ratios predicted by
the MTLE model at » = 100 km are 2.2 and 4.1, respectively.
For the other models the ratio is not sensitive to changes in H
from 5 to 10km. The leader and return-stroke field changes at
far ranges have the same polarity. The leader field change can
be viewed as being due to moving an equivalent point charge
(equal to the leader charge) from its original position in the
cloud to some lower position which depends on the leader
charge density distribution along the channel, and the return

Electric Field (kV/m)

40 60 80 100

Time (us)
Figure 4. Calculated vertical electric fields 50 m from the
lightning channel base for six return-stroke models. See also
caption of Figure 2.
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Figure S. Typical measured V-shaped electric field waveforms
produced at 30, 50, and 110 m by a leader/return-stroke
sequence in triggered lightning. The downward going leading
edge of the waveforms is due to the leader while the upward
going trailing edge is due to return stroke. The transition from
leader to return stroke occurs at the bottom of the V. Note the
flattening of the return-stroke field within 10 ps or so. The
waveforms are adapted from Uman et al. [1994].
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Table 2. Ratio of Leader-to-Return-Stroke Electric Field as a Function of Distance as Predicted by Five Return-Stroke Models

Versus Observations
Return-Stroke Distance, km
Model
0.05 1 5 20 50 100
MTLL -0.99 .85 -0.14 +0.81 +0.97 + 0.99
MTLE -1.0 0.92 +0.14 +26 +3.0 + 3.1
BG -1.0 -0.87 -0.09 +1.1 +1.2 + 13
TCS -1.0 -0.88 -0.08 +1.1 +1.3 + 14
DU -1.0 -0.88 -0.08 +1.1 +1.3 + 14
Experimental -1.0(6)* -0.81(6)° -0.17(12)° +0.897)¢ -
Data
(Mean Values)

Only the deposited charge density component (see Table 1) is used. For the MTLL and MTLE models the deposited charge
density component is calculated at =1 ms. H = 7.5 km; A = 2 km; 1, = 0.1 ps; current at the channel base is the same as that
adopted by Nucci et al. [1990, Figure 4a]. The numbers in the parentheses indicate the sample sizes.

*Uman et al. [1994, Table 1]; triggered-lightning strokes.

*Beasley et al. [1982, Figure 23b]; distance range from 1 to 2 km; first strokes in natural lightning.
‘Rakov et al. [1990, Figure 3a]; distance range from 4 to 6 km; first strokes in natural lightning.
%Beasley et al. [1982, Figure 23d]; first strokes in natural lightning.

stroke field change as being due to moving that equivalent
charge to ground. For the MTLL model this position is midway
between the charge source and ground, while for the BG, TCS,
and DU models this position is somewhat closer to ground, and
for the MTLE model it is approximately 3 times closer to
ground (for H =17.5 km) than to the cloud charge source. Table
2 also gives the experimentally observed leader-to-return-stroke
electric field change ratios at various distances taken from the
literature [Beasley et al., 1982; Rakov et al., 1990, Uman et al.,
1994], which are in support of the MTLL, BG, TCS, and DU
models, but not the MTLE model. Thus we conclude that the
total charge density distribution for the MTLE model is
excessively skewed toward the bottom of the channel causing
(1) a large electric field ramp at distances of the order of some
tens of meters, not seen in the experimental data (for return
strokes in triggered lightning) and (2) too large a leader-to-
return-stroke electric field change ratio at far ranges. As seen
from Figure 3b, the large electric field ramp predicted by the
MTLE model is associated with the deposited charge density
component (the second term of (26)). In the MTLL model, as
compared to the MTLE model, a larger fraction of the total
return-stroke charge is transported to the upper channel sections
rather than being deposited on the bottom part of the channel.

Interestingly, from Figure 4, the 50-m electric fields at 100
us predicted by various models are in approximately the same
proportion as the charge density near the bottom of the channel
associated with those models (shown in Figure 2, also at ¢ =
100 us), consistent with (B24). This effect can be readily
explained for the MTLL and MTLE models: At later times
(strictly speaking when the retum-stroke current ceases to flow
in all channel sections of interest) the deposited charge density
component of p,(z’,f) (see Table 1) is dominant; and, further,
O(z',0)= const and at very close ranges, such as 50 m, 2'<<A for
the portion of the channel "seen" by the observer. As a result,
(B24) is applicable and the ratio of the electric field magnitudes

for MTLE and MTLL models approaches H/A = 7.5/2 =3.75,
not far from the ratio, about 2.8, of the field magnitudes for the
MTLE and MTLL models seen in Figure 4 at 100 ps (when
some current still flows in the channel). The field ratio should
increase with time (as current approaches zero) getting closer
to the value of 3.75 determined by the ratio H/A. It appears that
(B24) can be a useful tool for estimating the line charge density
at the bottom of the lightning channel from measurements of
return-stroke electric fields at very close ranges.

Summary

1. Exact expressions for lightning return-stroke electric and
magnetic fields as a function of the charge density along the
lightning channel, equivalent to the widely used field
expressions in terms of channel current [e.g., Uman, 1987],
have been derived. The expressions are valid for any return-
stroke model. Exact expressions for the leader electric and
magnetic fields as a function of both space- and time-varying
charge density are also obtained.

2. The charge density distributions along the lightning
channel for six return-stroke models have been determined and
compared. The charge density distribution for the TL model is
the same as that of a traveling current wave and vanishes after
the wave has traversed the channel. The MTLE model, in
contrast with the MTLL, BG, TCS, and DU models, is
associated with a total charge density distribution that is
strongly skewed toward the bottom of the channel. As a result,
the MTLE model predicts a large electric field ramp at very
close ranges not seen in the available experimental data and a
ratio of leader-to-return-stroke electric field at far distances that
is about 3 times larger than typically observed. Very close
electric fields predicted by the MTLL, BG, TCS, and DU
models appear to be consistent with the available experimental
data for return strokes in triggered lightning. The leader-to-
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return-stroke electric field ratio at far ranges for the MTLL, BG,
TCS, and DU models is not far from unity, in keeping with the
observations. In the TCS and DU models, the charge density
distribution during the return-stroke process is influenced by
the inherent assumption that the current reflection coefficient at
ground is equal to zero. The equations for line charge density
given by Nucci et al. [1990] for the MTLE and TCS models are
incomplete in that they represent only the deposited charge
density component rather than the total charge density which is
the sum of deposited and transferred charge density
components.

Appendix A: Relation Between Charge Density and
Current to be Used for the Formulation of Return-Stroke
Models in Terms of Charge Density on the Channel

Consider a section of the current-carrying channel at an
arbitrary height z’ (Figure 1a). The return-stroke front starts
from ground at #= 0 and reaches a height z“at t = z’ /v, where
v is the speed of the upward moving front assumed to be a
constant. The continuity equation relating the charge per unit
length p* (z’,t") and the current i*(z}¢’) in a return-stroke
channel at an arbitrary time t’ is given by

o) aitEleh
ot’ oz/

(A1)

where the asterisks are used to denote variables that are
specified so that they can be nonzero only at and behind the
propagating discharge front, while the same variables without
asterisks may be specified as continuous functions which are
independent of the position of the moving front on the channel.
The return-stroke current and return-stroke charge density do
not exist above the return-stroke front and hence can be
expressed as

i*@th = u[t’-z—/]i(z’,t’)
v

(A2)
Pt = u(r’ )pL<z ) (A3)
where u(t’ - z'/v), the Heaviside function, is defined as
ult'-z'h) = 0 t<z'iv
(A9)

ut'-z'W)y = 1 t>z'v

and i(z’,t") and p,(z’,t") are continuous functions of z’ and ¢'.
Note that the continuous functions i and p, can exist above the
return-stroke front where there is no actual current or charge
density. Substituting (A2) and (A3) in (A1), we get

l/[t/ Z]apL(z t’) ll Z]pL(z t/)

v

- [t’ z]&:(z t’)

v oz’

(ASa)
-2 ) i’ th
where 8(¢' - z’/v) is the Dirac delta function which is equal to

zero for all values of ¢ except for # = z'/v, and whose integral
over time, including ¢’ = z'/v, is equal to unity.
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Below the front, £ > 2’/v, the Heaviside function in (A5a) is
equal to unity and the delta function is equal to zero, so that the
continuity equation (A5a) reduces to

) aiEl
ot’ oz'

(ASb)

Taking the time integral from — to #' > z'A on both sides of
(A5a) and noting that the integral from - = to z'/v is zero
because the retum-stroke front has not yet arrived at the channel
section under consideration, we can write

fapL(z ,T) v oz z_
// v
(A6a)
fai(z 1) PR iz’ z'v)
Y 02! v

At the front, ¢’ = z'/v, the integral terms in (A6a) are equal to
zero, and the continuity equation becomes

o Z/Z_/ _ ez’
0 v

Since z' and ¢’ are independent variables, the first term on the
left-hand side of (A6a) can be rearranged as

(A6b)

t 1
= [dp2')
h 7 (A7)

= PL(Z /,t ') - pL(Z /,Z ' V)

f pL(z %)

Substituting (A7) in (A6a), we can write,

'I
1on _ @@ZIW) iz T)
pL(z :t/) - v f 7 d‘t

z'v

(A8)

Equation (A8) with ¢’ replaced by ¢ is used in the paper to
derive the charge density distribution along the lightning
channel for six return-stroke models.

Appendix B

B1. Relations Between Charge Density and Current to be
Used in the Derivation of Field Equations in Terms of
Charge Density on the Channel

If a known charge density is to be used in the calculation of
the remote electric and magnetic fields, retardation effects must
be taken into account. That is, the charge density at an
appropriate earlier time, ¢ - R/c, contributes to field at time ¢ a
distance R away. The following derivation will be given for the
case of retumn strokes with modifications needed for the case of
leaders being discussed at the end of this section. Taking into
account the retardation effects can be accomplished by
replacing ¢ by t - R(z )/c in (A2) and (A3), where
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REH = Jz"?+r?

Then the substitution of (A2) and (A3) into (A1), noting that
dt’/dt =1, gives

,{, ReH 2 ] 3p,(z't -R@zVc)

c v ot

. a[,_R(z’)_Z_’] p{z,,,_k(_zo]
C v C

(B1)
- -y I_R(z’)_z_’ iz’ t-R(z")/c)
c v

az/

c v va(z’) c

Angle 6(z’) is defined in Figure 1a, and v,(z') is the speed of the
return-stroke front as "seen” by the observer at P when the front
passes z’ at time ¢* = R(z')/c + z'/v. The latter equation
differentiated with respect to ¢ “yields v,(z") = dz'/dt *. Equation
(B1) is the continuity equation as "seen" by the observer at P at
time 7. It represents an event that occurred a time R(z')/c earlier
but was not "seen" until ¢ because of propagation delay. For
t> R(z")c + z'/v (behind the front) the Heaviside function in
(B1) is equal to unity and the delta function is equal to zero so
that we can write

Op,fz'1-REDel  aifz'-Rez"Ve]
ot oz’

(B3)

Integrating (B1) from z'/v + R(z')/c to ¢ leads to
R ')) _iEz'z'h)
c

v, @

p L(z ”t -

f dilz' % —R(z Al ; (B4)
x R(z

Equation (B4) defines the charge density distribution along the

channel at any given time # as "seen" by a stationary observer at

P at a distance r from the base of the channel (see Figure 1a).
If "a" and "b" are two independent variables, the Leibnitz's

formula for the derivative with respect to a of an integral of the

function f{a,b) with limits being functions of a, is given by

h(a)
4 f Rab)db = fmdb
5 (B5)
+ flan@n 2@ d”“’) ﬂag(a)}%
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Applying (B5) to (B4) and noting that z’ and 7 are independent,
we can rewrite (B4) as
R d ¢+ ., R
pL(z/”_ (cz,)) = _Z;' I{«I)’(ZI’T_ (z,)ﬂ‘r

v ¢

(B6)

From (B6), we find

pu(at-RED) gy
(4

: ®B7)
= - f it -&j—/))dt
# Ra)

v c

Further, multiplying both sides of (B3) by dz’, we find

op (2’ 1-RENe)
—_—dz
ot
(BS)
_0i[z’ t-R(z")/c] by
/

™ -di@z' t- R(z’))

Finally, taking the partial derivative with respect to time of
(B8), we obtain

o [z’ 1-Rz")lc] ( oi[z' t-R(z")lc]
—  dr!= -q | STRE ]
or? ot @)

Equations (B8) and (B9) are valid for any lightning process,
while (B6) and (B7) are applicable only to the return-stroke like
process. For a leader beginning from a height H,, at time #=0
and traveling downward at a speed v the lower limit of the
integral in (B6) and (B7) will be the sum of the travel times
from the source at H,, to z’ and from z' to the observer, that is,
(H,z) + R(Z)/c. In general, the lower limit of the integrals
in (B6) and (B7) is the time, #,(z"), at which the channel current
is "seen" to begin at z' by the observer at P and with this
modification (B6) and (B7) are valid for any lightning process.

B2. General Expressions for Differential Electric
and Magnetic Fields

The remote differential electric field at ground due to a
vertical, current-carrying element dz’ above a perfectly
conducting earth is given by (1). In the following, (1) will be
written in terms of charge density using (B7), (BS), and (B9)
and some additional equations derived later. Each term of (1)
can be represented, omitting 1/(27e,), as

G EOLEH=d/, &) E D -£E)d,EH  (Bl0)

where f,(z',f) is the current integral, current, or the current
derivative and the total differential df,(z’) is dz'(2z%-r*)/R’(z"),
dz'(2z"%-r)/cRY(z"), or -dz'P*I*R(zZ").
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Using (B10), the first (electrostatic) term of (1) can be Finally, we find that the third (radiation) term of (1) can be

expanded as follows: written as
dE(rf) = — dE(rp) = =L
2rwe, 27we,
2 L R . -z i@z’ t-R(z"lc)
’{ eyl 5""”"7)"‘] d(c’R(zo o @19
bz
U (B11) 1 -z 4( di(z' x-R(z ’)/c]
) 2me, Rz 2, ¢ 'R
, R
[ie ""'(—52)‘*‘ Applying (B9) to the second term of (B15), we get
1,(z"
dE(rf) = —
2me,
Applying (B7) to the second term of (B11), we get
/ Yo
1 . -z 9iz’ t-R(z"lc)
dE’(r,i) = 21!60 d( CzR(Z,) ot (Bls)
1 2! @pl'aRe ’)/c)ﬁdz ,
R3z’) f iz’ T—R(zl))d‘t (B12) 2re, cR(zY or?
(s )
1 '_R(z'))dz, Adding (B12), (B14), and (B16), we obtain expression (B17)
iy &R 3( A — P . for differential electric ﬁeld, equivalent to (1),
| _R@H.\ .
dE D = /
Similarly, the second (induction) term of (1) can be written as {0 2me, R ')pL( c M
_ 3z 1 [3 z/  1tan’'(z'fr)
dE(r.p)= ZRGO{[ 2 o 2neol2 Rz 2 cr
"4-R
, Lunl@n J_R(z'))) 'ﬁ[ifaTSZI)/_c}dzl
2 cr c
(B13)
1 (- 3 =z ltan"(z’/r)]
2me, 2c(z%+r?) 2 cr 1z Fplza-RE'e]
27me, c2R(zY or?
4(n(z',t R("))] 1 5 ®17)
R(z
+ i@/ -==Lydv
2me, | R 3(2 ) 3,2{’)
Applying (B8) to the second term of (B13), we obtain 1 3 g
dEfrp=—Ldl [-3_Z e\ 2
2xe, 2 cR%zZY s
-1,/ +;ta.n & /r)}i(zI/‘R(z,))]
, ltan’c /r)]i(z,"_R(z’))] cr c
2 cr c ) ans
(B14) 1 gl -2 ailz't-Re He)
1 [ 3 z/ ltan’(z ’Ir)] 2me, | c2RzH ot

21!6 2cR2(z’) 2 cr

e
. 9p ' 1-Riz e iz In a similar manner the differential magnetic field given by (2)
ot can be rewritten as
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1 1 2
2nec’r R

dB¢(r ’t) =

op [z't-REzNe]
. dz
ot

+

1 Pp (' t-Riz'c)
L T dr

1 -1
“tan i ) o B18)

2
2nect C

L1 1 2/
2rec? \ T REH

L1 1 tan" & ) di[z' t-R(z ’)/c]]
211:600 ot

i[z' t-R(z ')/c]]

Note that (B17) and (B18) are general and applicable to any
lightning process in a vertical channel above a perfectly
conducting ground. Some terms of (B17) and (B18) still
contain current. In the following, (B17) and (B18) will be
integrated for specific lightning processes (return strokes and
leaders) with the results being expressed in terms of charge
density only.

B3. Return-Stroke Electric and Magnetic
Fields (General Considerations)

The return-stroke front is assumed to propagate upward with
a constant speed v starting from ground at time =0. If H(f) is
the "radiating” length of the channel "seen" by the observer,
then it appears that the total electric field at P at time ¢ should
be given by integrating (1) from 0 to H(?),
_ 1 H‘;f)[ 22722
27e, 5 R3@EY

RaH,,,
c

E(r1)

t
iz -

LIOM

v L4

(B19)
2z72-p2 RzH

+ iz' -
& e
r2  8i’ t-Rize) 1z
cR3zH ot
However, the current and current derivative in (B19) are
implicitly assumed to be continuous. If there is a current
discontinuity at the discharge front (as is the case for the BG
and TCS models) the contribution to the field due to the current
discontinuity has to be found separately and added to (B19) to
get the total field. In the presence of current discontinuity at the
discharge front we can divide the interval from 0 to H(?) into
two parts, one part from O to H'(f) where the current is
continuous and the other part from H'(f) to H(f)+ah, sh-0,
corresponding to the current discontinuity, to get
H(@®)
E@p = [dE(rD
0

(B20)

H(® lim H™(0)+Ah
de(',f) +Ah 0 f dE("t)
H®
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B4. Return Stroke Electric and Magnetic Fields
for the Case of no Current Discontinuity
at the Moving Front

The first term of (B20), which corresponds to a continuous
current distribution along the channel, can be rewritten as

H (%) H @
[dEeD = [dE(D
0 ]

(B21)

H () H™ @)

() + [ dE(rH
fasien [

where dE(r.1), dE(r 1), and dE (r.{) are given by (B12), (B14),
and (B16), respectively. We find that the first (electrostatic)
term of (B21) is

1

E@y =
0 27e

0

o

f iz’ r-R(z,))dt
i/ Rz

V c

3(Z’) B22)

HO
fRS( 1 "“R(ZI))dZ'

21|:e

Invoking (3), we can show that the first term of (B22) is zero.
Therefore we write

H (@ 5/

_ 1
Es(" B = 2re f R3( ,)

Equation (B23) can also be obtained from Coulomb's law by
dividing the charged channel into elements small enough to be
approximated by point charges and summing the field
contributions due to these elements with the retardation effects
being taken into account. It can be shown that if (1) r < < H' (¥),
(2) retardation effects are neglected, and (3) p, does not vary
significantly with height within the channel section contributing
to field at 7,

(B23)

0, t-RED gy
c

P, ()
21te0r

Erd =~ - (B24)

Equation (B24), which is similar to (4) of Rubinstein et al.
[1995] derived for a very close uniformly charged and fully
developed leader, tells us that the electrostatic field produced by
a very close return stroke is approximately proportional to the
charge density (assumed to be more or less height-independent)
on the bottom part of the channel. Equation (B24) probably
explains why the 50-m electric fields at 100 ps for various
return-stroke models (see Figure 4) are roughly in the same
proportion as the charge density values near ground (see Figure
2), the feature discussed in more detail in section Validation of
Return-Stroke Models Using Published Experimental Data.
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The second (induction) term of (B21) can be similarly
expressed as

E(r

2we,

.3 2 1wn@m i@ tR(z’) o
2cR2(z’) 2 cr

1 H;')[3 z/
2re, 4 \ 2 cR¥2)

21 tan"(z’/r)] op,[z'.1-R(z)c] &'
ot

2 cr

When limits H(f) and 0 are applied (B25) becomes

1 (3 H
2me, | 2 cRAH()

1 "[H(r)/r]]{ . (t))

E(r =

2
. (B26)
1 " f‘) 3 2z
27e, o 2 cRzH
_ 1tan”'z'r) | Op [z 4-RE )] &
2 cr ot
Setting z' = H'(f) in (B4) and using (3), we get
i[H @), HON =p [H ), HONVIH O]  (B27)
where
’(1) - v -
vIH (0] = - :008[9(11 @l (B23)

is the apparent speed of the return-stroke wavefront; that is, the
front speed "seen" by the observer at P (see Figure 1a). Note
that an analytical solution for /' (f) can be obtained from (3).

In a similar manner we find that the third (radiation) term of
(B21) can be written as

1 H®
2mey cXEH )

. OilH (), H (O]
ot (B29)

E(rp) = -

H® 1 Pplz/t-R(z ’)/c]dz ,

ot?

L1 f -z
2me, 4 c¥z”?+rd)'”?

Differentiating both sides of (B27) with respect to time, we get
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ol H-o 2@ -(’)

_d A H@® .
at[ L( H(0), ] v,H (t))l

Substituting (B23), (B26), and (B29) in (B21), using (B27),
(B28) and (B30) and replacing for simplicity H (f) by H(f), we
get the expression (equation (4)) for electric field in terms of
charge density distribution for the case of a return stroke, if
there is no current discontinuity at the moving front. If there is
a current discontinuity at the front, H(f) in (4) is to be
understood as H'(f), the position just below the discharge front
discontinuity. In this case, H(¥) in (B19) is also to be
understood as H'(f). Equation (4) is equivalent to (B19). All
the functions in (4) and in (B19) are continuous.

Adopting a procedure similar to that used for obtaining (4),
we can show that the azimuthal component of the magnetic
field at ground is given by (5).

BS. Return-Stroke Fields Due to Current
Discontinuity at the Moving Front

We now consider the second term of (B20). If we substitute
(1) in the second term of (B20), it is readily seen that as ah~0
the discontinuity does not contribute to the electrostatic and
induction field terms, only to the radiation field term. The
radiation field term due to current discontinuity at the discharge
front is given by
lim O
Ah-0

AE (r H = 21t€
H™@®)

r2  dilz/t-R@z ’)/‘i]dz’

'C2R3(zl) at 1)
_ 1 r2 . H(t), dH(f)
= H(),

Tne, RAAG] vl

-1 H@
= - H( v [H(
2me, ———sz D] ,{ ®, ] 2(H@)]
Note that (3) and (B27) were used to obtain (B31). To find the
total electric field from the return stroke with a current
discontinuity at the front, (B31) has to be added to either (4) or
B19).

Analogously, the total magnetic field is obtained by adding
to (5) the following term associated with current discontinuity
at the front:

1 r
¢ RYH®]

AB‘(’J) =

2mec?

H®| dH@®

H

{ ®, v] % (B32)

1 H@®
Hi
et ch{ o l( o, )v (H®]

The ratio of AE , to AB,, is equal to ~c{r/R[H ()]}, as expected.




THOTTAPPILLIL ET AL.: LIGHTNING CHANNEL CHARGE DISTRIBUTION

B6. Leader Electric and Magnetic Fields

The leader is assumed to propagate vertically downward
from a charge center at a height ,. The lower end of the
leader h(?) at time ¢, as "seen" by an observer at P (see Figure
1b) is given by the solution of (6). The electric field at ground
level is given by

HM

E,(r’t) = —deg(r’t)
k)

(B33)

where dE,(r,?) is given by (B17) in which #,(z") = (H,, - z)v
+R(z'Vc. Integrating (B3) along the leader channel and using

the relation
i(h(l),t—M) ( ot~ R[h(t)]) O 3
¢ c dt
we get

i(Hm,t—R(H"’)] pr[zt R(z')]dz' (B35)
¢ U o

Integrating both sides of (B35) from R(H,)/c to ¢, we obtain

{2

R(H,.)

- p,,(z ‘- R"”]dz'(ms)
K¢t)

Note that R(H,)/c is the time at which the observer at P first
"sees" the leader emerging from the charge center at H,,
Differentiating both sides of (B35) with respect to ¢, we get

RH)
c ] _ dz”..

dt dr?
dat* o

di(Hm,t -

p(z ‘- R("’]dz’ ®37)

Integrating (B17) as indicated in (B33) in a manner similar to
that shown in section B4 and additionally using (B35), (B36),
and (B37), we get the following expression for the leader
electric field:

H

E(rt) = —— [ =Z

2me, o

oo t-REDy 0
[

R"‘(Z’)

H,

1 f3 z/  1tan’''ln)
2rne, 2 cR¥zhH 2 cr

L U]
dpyle's-REC)
: &

ot
1 Hooo &p,[z't-R(z")/c)
+ f z L > dz’
2me, J, cR@) ar?

H,
1 A, o ( 14 R(z’)]dz’
21te R3(Hm) A L c

7005
1 (3 H, 1tan’@E ) ®38)
21|:eol 2¢R 2(Hm) 2 cr
a’r RG)
@' t-2E )dz’
@ Kf,)
1 (3 h@® 1 tanhtyr]
21|:€0k 2 cR¥n() 2 cr
( Ho, —h(t)) dh(t)
dt

fp( ’t R(Zl))dz/
21teoc2R(Hm) drz,m L c

H, -h
( o, (1)] d};t)

1 h@® [
"2, cRUn01 31| ¢

The magnetic field from the leader can be obtained by
integrating (B18) between the limits A(f) and H,, and using
(B35), (B36), and (B37),

Hll
Byrt) = - [dBy(r)
L U]

R
4 H,,,l 5/ apL(z RE )

2me 2y, T RED ot

H, asz[z - Re ,)J
1 fltan"( z ] ¢ )a!

2 2
2me,c 0 c r ot

1 |1 H, a' R(z%
. 1 m_a _z /
2me,c?|r REH, dt i)p‘(z’t c )dz
. |1 het) ( o R[h(t)]) dh(t)
2me,c? rR(h(t)) c

)2 50
2me c?|c r dtzm) o c
—[,_(h(i), R( ,..)] dh(t)}
c

In (B38) and (B39), dh(#)/dt can be obtained by differentiating
both sides of (6) with respect to time and rearranging the terms.

dz’

(B39)
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