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Abstract. Three different approaches to the computation of lightning electric fields are
compared. These approaches are the traditional dipole (Lorentz condition) technique and
two versions of the monopole (continuity equation) technique. The latter two techniques
are based on two different formulations of the continuity equation, one used by
Thottappillil et al. [1997] and the other by Thomson [1999], the difference between the
formulations being related to different treatments of retardation effects. The three
approaches involve the same expression for the vector potentiai but different expressions
for the scalar potential. It is analytically shown that the three different expressions for
the scalar potential are equivalent and satisfy the Lorentz condition. Further, the three
approaches yield the same total fields and the same Poynting vectors. However,
expressions in the three approaches for the individual electric field components in the
time domain, traditionally identified by their distance dependence as electrostatic,
induction, and radiation terms, are different, suggesting that explicit distance dependence
is not an adequate identifier. It is shown that the so identified individual field
components in the electric field equation in terms of charge density derived by
Thottappillil et al. [1997] are equivalent to the corresponding field components in the
traditional equation for electric field in terms of current based on the dipole technique.
However, the individual field components in the electric field equation based on
Thomson’s [1999] approach are not equivalent to their counterparts in the traditional
dipole technique equation. Further, in Thottappillil et al.’s [1997] technique and in the
traditional dipole technique, the gradient of scalar potential contributes to all three
electric field components, while in Thomson’s [1999] technique it contributes only to the
electrostatic and induction components. Calculations of electric fields at different
distances from the lightning channel show that the differences between the
corresponding field components identified by their distance dependence in different
techniques are considerable at close ranges but become negligible at far ranges.

1. Introduction

Rubinstein and Uman [1989] discussed two equivalent
approaches to calculating the electric fields produced by a
specified source. The first approach, the so-called dipole
technique, involves (1) the specification of current density

J, (2) the use of J to find the vector potential A , (3) the
use of 4 and the Lorentz condition to find the scalar
potential ¢, (4) the computation of electric field E using
A4 and ¢, and (5) the computation of magnetic field

B using A . iIn this technique the source is described only
in terms of current density, and the field equations are
expressed only in terms of current. The use of the Lorentz
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condition assures that the current continuity equation,
which is not explicitly used in this technique, is satisfied.
The second approach, the so-called monopole
technique (a somewhat misleading term), involves (1) the
specification of current density J (or line charge density
p), (2) the use of J (or p) and the continuity equation to
find p (or J ), (3) the use of J to find 4 and p to find ¢,
(4) the computation of electric field E using 4 and ¢,
and (5) the computation of magnetic field B using A4 .
In this technique the source is described in terms of both
current density and line charge density, and the field
equations are expressed (1) in terms of charge density, or
(2) in terms of current, or (3) in terms of both charge
density and current. The current continuity equation is
used to relate the current density and charge density.
There is no need for the explicit use of the Lorentz
condition in this technique, although properly specified
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scalar and vector potentials do satisfy the Lorentz
condition.

It appears that the main distinction between the two
techniques is whether the Lorentz condition is used to
relate the scalar and vector potentials or whether the
continuity equation is used to relate the currents and the
charges in order to completely describe the fields.
Therefore, in the following, we will refer to these
techniques as the Lorentz condition technique and the
continuity equation technique.

Thottappillil et al. [1997] used the continuity equation
to convert the lightning electric and magnetic field
equations, based on the Lorentz condition technique and
expressed in terms of current, to equivalent equations in
terms of line charge density. Thomson [1999] challenged
these equations alleging that the formulation of the
continuity equation used by Thottappillil et al. [1997] was
incorrect.  Thomson [1999] considered a different
formulation of the continuity equation and showed that it
was equivalent to the Lorentz condition. The two
formulations of the continuity equation differ in how
retardation effects are accounted for, as discussed in
section 2. In the following we present an analysis that
allows us to compare the formulations of the continuity
equation used by Thottappillil et al. [1997] and by
Thomson [1999] and show that they both are consistent
with the Lorentz condition, provided that the appropriate
expression for scalar potential is used. We also show that
the approach used by Thottappillil et al. [1997] predicts
electric and magnetic fields (expressed in terms of line
charge density) that are identical to fields based on the
Lorentz condition technique (expressed in terms of
current) in which the continuity equation is not employed.
Therefore we conclude that Thomson’s [1999] criticism is
unwarranted.

Further, Rubinstein and Uman [1989] and Safaeinili
and Mina [1991] demonstrated, for a step function wave
propagating along a vertical antenna, that field equations
based on the Lorentz condition and continuity equation
approaches, although equivalent, are very different in their
structure.  In this paper we extend their studies to an
arbitrary traveling wave and show that the individual
electric field components traditionally identified by their
distance dependence may be different in different
approaches.

2. Analysis and Discussion

2.1. Three Equivalent Expressions for Scalar Potential

We compare three expressions for the scalar potential
due to a lightning return stroke in a straight vertical
channel with the ground plane not taken into account.
These three expressions (cases 1, 2, and 3) differ by the
method used to express the scalar potential in terms of
current. Case 1 is derived from the Lorentz condition and
is used in our analysis as the reference. We will show that
cases 2 and 3, which correspond to the formulations of the
continuity equation used by Thomson [1999] and
Thottappillil et al. [1997], respectively, are equivalent to
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case 1. Therefore both formulations of the continuity
equation that differ in the way in which retardation effects
are accounted for are consistent with the Lorentz
condition.

2.1.1. Case 1: The Lorentz condition technique. As
shown in Appendix A, the scalar potential on a plane
perpendicular to the lightning channel and containing the
channel base, derived from the vector potential using the
Lorentz condition, is

g(r.0) =

r t

Z J i(z',r— R(Z')Jdr

L'(t) 3
1 R (Z') 2'lv+R(z")/ ¢

4re ' '
R ZZ i(z',t——R(Z )J
cR°(z")

As stated above, this is the reference case that does not
require the explicit use of the continuity equation. The
ground plane is not taken into account in (1). Note that
(1), and other equations for ¢ in this paper, give the
change in potential due to return stroke, not the absolute
potential.

2.1.2. Case 2: The continuity equation technique,
Thomson’s [1999] formulation. As shown in Appendix
B, the scalar potential for this case, which is equivalent to
its counterpart in case 1 and therefore is consistent with
the Lorentz condition, is

1 t—r/
d(r,t) = 4_._Q_(r;c)
TTEY (2a)
1 £ 1
* ‘,t —-R v/ l’
+ ———47[60 6[ R p*(z (2" c)dz
where
t
Ot -r/c)=- Ii(O, r—rlo)dr (2b)
rlc
is a stationary point charge located at z'= 0, and
op* (z',t - R(z')/c)
ot 20)
_ai(z't-R(z)/c)
oz' t—R(z")/ c=const

Equation (2c) is the continuity equation used by Thomson
[1999]. In (2c) the partial differentiation of retarded
current with respect to the source coordinate z' is carried
out keeping the retarded time constant. That is, the
dependence of R (z') on z' is ignored while taking the
partial derivative. Equation (2c) can be arrived at from
physical reasoning as follows.

Consider a current-carrying channel segment of length
Az' whose center (midpoint) M is at a height z' (Figure 1).
Let g*(z't*) be the charge contained in the segment at
time *. Associated with g*(z',¢*) is a line charge density,
which is defined as
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Figure 1. Geometry for explaining the physical meaning
of two formulations of the continuity equation, which
differ in how retardation effects are accounted for. M is
midpoint, T is top point, and B is bottom point. See text
for details.

. lim  q*(z',1%)

PEE = o 0

Charge conservation principle requires that a positive rate
of change of charge in segment Az’ is equal to a negative
net outflow of current from the segment. That is,
Oq*(z',1*)/ O0t*=— [i(z'+Az' 12,t%) - i(z'-Az'/ 2, t*)] .Note that
currents at the top and bottom boundaries (T and B) of the
segment are specified at the same local time ¢*. Dividing
through by Az’ and letting Az'—> 0, we can obtain the
continuity equation dp*(z',t*¥)/ot* = -08i(z',t*)/dz', with
t* kept constant while carrying out the partial
differentiation with respect to z'. The local time ¢t* could
as well be t-R(z')/c, where t is the time measured at a
remote observation point P at a distance R(z'), as shown in
Figure 1. Then we can write the continuity equation (2c).
Thottappillil et al. [1997] used a similar equation to obtain
the charge distributions along the channel for different
return stroke models (see their equation (Al) and Table
1). However, to convert the electric and magnetic field
expressions in terms of current to equivalent expressions
in terms of charge density, Thottappillil et al. [1997] used
a different form of the continuity equation in which
retarded time is not kept constant. This situation is treated
in case 3 below.

It is easily seen that the point charge Q(z-r/c) at z'=0,
given by (2b), is required to satisfy the continuity equation
at z'=0. It is equal in magnitude and opposite in sign to
the charge distributed by return stroke along the channel.
It represents the amount of charge removed from the
origin (z'=0) due to the return stroke current flow.

2.1.3. Case 3: The continuity equation technique,
Thottappillil et al.’s [1997] formulation. As shown in
Appendix C, the scalar potential for this case, which is
equivalent to its counterpart in case 1 and therefore is
consistent with the Lorentz condition, is
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It is possible to derive (3a) starting from (2a). The
relationship between p*(zt-R(z)/c) in (2a) and p(z't-
R(z’)/c) in (3a) is derived later in this section. In (3a), o
and p are line charge densities and Q is a stationary point
charge. Equation (3c) is the continuity equation used by
Thottappillil et al. [1997] to convert the field equations in
terms of current into equivalent equations in terms of
charge density. In (3c) the partial differentiation of
retarded current with respect to the source coordinate z' is
carried out without keeping the retarded time constant;
that is, the total-partial or whole-partial derivative
[Brownstein, 1999] of retarded current is taken.

We now offer, with reference to Figure 1, a physical
interpretation of the continuity equation (3c). An observer
at P does not “see” the currents at the top (T) and bottom
(B) of the segment at the same time. The current at T that
observer sees at a given time ¢ is from an earlier time ¢
R(z+Az72)/c, and the current at B that observer sees at
time ¢ is from a different earlier time #-R(z-Az72).
Therefore the rate of change of charge in the channel
segment as seen by the observer at P is

oq(z',t - R(2)/¢c)
ot

+i(z+Az'/ 2,1 - R(z'+Az'/2))
T\i(z-Az2, 1~ R(z-A212))[

Dividing through by Az’ and letting Az >0, we can get
(3¢), the equation relating charge density and current in
the channel as seen by observer at P.  The line charge
densities corresponding to case 2 (p*) and case 3 (p) are
different. For the general case of observer above ground,
these two charge densities are related by (from equation
(B9))
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Scalar Potential Case 1
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Figure 2. The scalar potential and its components at ground level as predicted by the transrpission line
model at a distance of 1 km, computed using the dipole (Lorentz condition) technique (equation (1)).

ap(z',t - R(z')/c) _ op* (z',t - R(z‘)/c)

ot ot 3d)
z'-rcos di(z',t - R(z')/c)
cR(z') ot ’

where the second term on the right-hand side can be
viewed as an adjustment term for the time rate of change
of local charge density. Integration of both sides of
equation (3d) over time yields

p(z',t - R(z‘)/c) = p*(z‘,t - R(z')/c)

£ 22re0sO o R e).
cR(z")

(3e)

The factor (z'-rcosd)/(cR(z"))=-3(R/c)/dz' is the

negative rate of change of time retardation with respect to

" Although (1), (2a)-(2¢c), and (32)-(3c) for the scalar
potential are very different in their structure, they are
equivalent. Application of (3e) (with 8= 90°) in the scalar
potential expressions (3a)-(3c) gives scalar potential
expressions (2a)-(2c). Thus (2a)-(2c) and (3a)-(3¢) are
analytically equivalent. Further, as shown analytically in
Appendices B and C, the time derivatives of scalar
potentials defined by (1), (2a)-(2c), and (3a)-(3c) are
identical (compare equations (B15) and (C7)). Time
integration of (B15) or (C7) and changing the order of
integration according to (AS) yield (1). The equivalency

Scalar Potential Case 2

1,5E+06 -
1,0E+06 -

5,0E+05 -

o

o

m
+

(@]

o
n

E]

-5,0E+05 -

Potential (V)

-1,0E+06 -

-1,5E+06 -

-2,0E+06 .

0 2 4
Time (ps)

Figure 3. Same as Figure 2, but computed using the continuity equation technique, Thomson’s [1999]

formulation (equations (2a)-(2c)).
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Scalar Potential Case 3
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Figure 4. Same as Figure 2, but computed using the continuity equation technique, Thottappillil et

al’s [1997] formulation (equations (3a)-(3c)).

is confirmed by calculating numerically the scalar
potentials as a function of time at a distance of 1 km using
(1), (22)-(2¢), and (3a)-(3c), with the results being shown
in Figures 2, 3, and 4, respectively. The transmission line
model [e.g., Rakov and Uman, 1998] of the return stroke
is used in all numerical calculations. As noted above, the
ground plane is not taken into account. As seen in Figures
2, 3, and 4, the total potentials for cases 1, 2, and 3,
although composed of different components, are identical.
It turns out that for the same A , one can specify different,
but equivalent expressions for ¢, that would satisfy the
Lorentz condition. In the following we will show that the
traditional separation of electric field in the time domain
into electrostatic, induction, and radiation components
identified by their distance dependence may be different in
different techniques, suggesting that explicit distance
dependence is not an adequate identifier.

2.2. Individual Field Components

2.2.1. Case 1: The Lorentz condition technique.
The traditional expressions for electric and magnetic fields

L'

Figure 5. Geometry used in deriving field equations (4),
(5), (6), and (8).

at ground level using the dipole (Lorentz condition)
technique are given elsewhere [Uman et al., 1975;
Thottappillil et al., 1998; Rakov and Uman, 1998] and
reproduced below. The geometry is shown in Figure 5.

EV(r,t) =

1 P2 3sinta()
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In (4) and (5), Ey is the vertical (z - direction) electric field
at ground level, By is the horizontal (¢ - direction)
magnetic field at ground level, and L{¢) is the height of
the return-stroke wave front as seen from the observation
point. The lower limit of the time integral of the first term
in (4), t,, is the time at which the return stroke wave front
has reached the height z” for the first time, as seen from
the observation point. As opposed to equations for the
scalar potential given above, the effect of ground is taken
into account, assuming it is perfectly conducting.
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Equations (4) and (5) are valid for any return stroke
model. Individual terms on the right-hand side of (4) are
labeled the electrostatic, induction, and radiation
components, and on the right hand side of (5) they are the
magnetostatic (or induction) and radiation components. It
is customary to identify the electrostatic component by its
R? distance dependence, induction components by their
R? dependence, and radiation components by R
dependence [e.g., Thomson, 1999]. The last term in (4)
and the last term in (5) become zero if there is no current
discontinuity at the propagating wave front, i.e. if i(L'¢-
R(L%/c) = 0. Far away from the return stroke channel,
z<<r, @~ 90°and hence sina = 1. Therefore in (4), with
the last term dropped, the factors in front of the integral of
current (electrostatic term), current (induction or
intermediate term), and time derivative of the current
(radiation term) can be approximated as R>, ¢'R?, and
¢?R", respectively. Thus, far away from the channel the
electrostatic, induction, and radiation terms for a
differential channel segment fall off as R? R and R
respectively, but at closer distances, sina is additionally
involved.

2.2.2. Case 2: The continuity equation technique,
Thomson’s [1999] formulation. As shown in Appendix
D, electric and magnetic field equations can also be
derived using the continuity equation technique
corresponding to case 2 with the expression for vertical
electric field at ground level being given by

EV(r,t) =
L'(t) ,

z ) — 1 4
6|. B p*(z ,t—R(z )/c)dz

2mey

L'(1)

_21 J‘ Rzz' : Gp*(z',ta—’R(z')/c)dz,
&y F (2" 6)

L'(t) e ,
1 1 Bl(z,t—R(z)/c)dz,

27e, ; c¢2R(z") ot

RO dL'
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27e, ch(L')p ( (/) dt

1 1
27ey c2R(L")

i(L,e - R(L')/c)%.

The magnetic field expression using this approach is
identical to (5), since it is completely determined by the
vector potential. Note that by definition, the current and
charge density in (6) are related by the continuity equation
(2¢) used by Thomson [1999]. Equation (6) contains both
current and charge density, while (4) contains only
current. The first three terms of (6) are similar to the
corresponding terms of the expression for E-field derived
by Jefimenko [1989, p. 516] for a charge and current
distribution whose boundary is fixed in space. By analogy
with (4), the first term of (6) can be considered as
representing the electrostatic field (R dependence), the
sum of second and fourth terms as representing the
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induction field (¢'R?* dependence), and the sum of third
and last terms as representing the radiation field (c*R’'
dependence). It appears that the electrostatic, induction,
and radiation terms (except for the last two terms
associated with the wave front) in (6) can also be
identified as containing z’ times line charge density
(charge), z’ times time derivative of line charge density
(time derivative of charge or current), and derivative of
current, respectively.  If there is no current or charge
density discontinuity at the wave front, the last two terms
become zero.

It can be shown that while the total fields given by (6)
and (4) are identical, the individual field components
(electrostatic, induction, and radiation terms identified by
their dependence on R) in these two equations are
different. This was verified by calculating the individual
field components and the total fields using six different
return stroke models (Bruce-Golde (BG), Traveling
Current  Source (TCS), Diendorfer-Uman (DU),
Transmission Line (TL), Modified Transmission Line
with Linear current decay with height (MTLL), and
Modified Transmission Line with Exponential current
decay with height (MTLE) models described by Rakov
and Uman [1998]). Of these six models, the BG and TCS
models have current discontinuity at the wave front
whereas other models do not have wave front current
discontinuity. As an illustration, the individual field
components and the total fields at three distances for the
TL model are presented here. Since there is no
discontinuity at the wavefront for the TL model, the last
term of (4) and the last two terms of (6) drop out of the
equations. The charge density in (6) is calculated using
the continuity equation (2c), which for the transmission
line model can be rewritten as [ Thottappillil et al., 1997]

o~ R /)= i(0,6—z'/v-R(z")/ )

)

v

where v is the return stroke speed.

Computed electric fields at distances of 50 m, 1 km,
and 100 km are shown in Figures 6, 7, and 8, respectively.
In the curve labels in Figures 6, 7, and 8, LC indicates the
terms in (4), and CE indicates the terms in (6). The labels
EQ, EI, and ER indicate the electrostatic (R™> dependence),
induction (c¢'R? dependence), and radiation (c’R
dependence) field components. The following can be
observed from Figures 6, 7, and 8 and from (6) and (4).

1. The total fields given by (4) and (6) are identical (for
up to several decimal places when numbers are
compared).

2. In (6) the electrostatic and induction terms are given
completely by the gradient of the scalar potential, while
the radiation term is completely given by the time
derivative of the vector potential. In contrast, in (4), both
the gradient of the scalar potential and the time derivative
of the vector potential contribute to the radiation field
term.

3. The electrostatic (R dependence), induction (¢'R”
dependence), and radiation (c?R™ dependence) terms in
(4) are different from the corresponding terms in (6). The
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Figure 6. Comparison of the total electric field and its components (identified by their distance
dependence) at a distance of 50 m predicted by the transmission line model and field expressions (4)
and (6). The labels EQ, EI, and ER indicate the electrostatic (R” dependence), induction (R
dependence), and radiation (R dependence) field components. LC (Lorentz condition) at the end of the
label corresponds to (4), and CE (continuity equation) corresponds to (6).

difference is considerable at 50 m (very close to the
channel) and almost negligible at 100 km (far away from
the channel).

4. At 50 m (very close to the channel), the electrostatic
term (R dependence) in (4) is larger than its counterpart
in (6) (compare curves EQ LC and EQ_CE in Figure 6).
However, if we assume infinite field propagation speed,
the same charge density will be obtained whether we use
(2¢) or (3c), and the electrostatic terms in (6) and (4) will
be equivalent. Thus the difference between the two
formulations of the continuity equation is related to
different treatments of retardation effects.

The above analysis clearly shows that even though the
total electric field from a current or charge distribution is
unique, the division of total electric field in the time

Electric Field (V/m)

EV_LC&EV_CE

domain into so-called electrostatic (R’ dependence),
induction (c¢'R? dependence), and radiation (c’R’
dependence) components is not unique. Note that in the
Lorentz condition technique, all field components are
expressed in terms of current, while in the continuity
equation technique, both current and charge density are
involved. If the approach described in case 1 is adopted,
the gradient of scalar potential contributes to all the three
field components, whereas if the approach described in
case 2 is adopted, it contributes only to the electrostatic
and induction field components. Whether it is case 1 or
case 2, the expression for magnetic field at ground level is
the same, (5), since it depends only on the vector
potential. We get the same Poynting vector whether we
calculate it from equation pairs (4) and (5) or (6) and (5),

r=1km

0 ER_LC R G
0 2 4 6 8
Time (ps)
Figure 7. Same as Figure 6, but at a distance of 1 km.
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since the total electric fields given by (4) and (6) are the
same. In fact, (4) can be analytically derived from (6), as
shown in Appendix E.

2.2.3. Case 3: The continuity equation technique,
Thottappillil et al.’s [1997] formulation. It is possible to
start with the scalar potential defined for case 3 (equation
3a) and the corresponding formulation of continuity
equation (3c), used by Thottappillil et al. [1997], and
obtain an expression for electric field using a procedure
similar to that adopted in Appendix D. However, field
equation corresponding to case 3 is readily obtained by
substituting (3d) and (3e), which relate charge densities in
case 2 and case 3, into the field expression (6), as shown
in Appendix E. The resultant electrical field expression at
ground is given below.

Ey(r,t) =

L'(t)

1
—%g j e ')p(z Jt—R(z")/c)dz'

- R(z")/c)dz'

1 L'(f )
COS a\z
————(

+2
ey 0 ()

L'(@t)

27rs .[

2 op(z t-—R(z)/c)d, 8)
cR%(z") ot

sm 2a(z") 61 z' t—R(z)/c)

27:5(, c2R(z") ot
A dL'
' /
“me, ch(L) Pl = R ) dt
1 sin?a(l") ( _R(L )/c)dL‘

" 2mgy c2R(LY)

Equation (8) 1is the electric field expression
corresponding to case 3, in which the line charge density
and current are related by the continuity equation (3c)
used by Thottappillil et al. [1997]. The first term of (8) is
the electrostatic field component (R dependence), the
sum of second, third, and fifth terms is the induction field
component (R dependence), and the sum of fourth and
last terms is the radiation field component (R
dependence). It is readily seen that the radiation field
component of (4) (the sum of the last two terms) is
identical to the radiation field component of (8) (the sum
of the fourth and last terms). Equation (8) is analytically
equivalent to (6), since the former is derived from the
latter. Further, it is shown in Appendix E that (8) is
analytically equivalent to the electric field expression
derived by Thottappillil et al. [1997], the latter expression
being reproduced as (9) in section 2.3.

2.3. Expression for Electric Field in Terms of Charge
Density of Thottappillil et al. [1997]

Thottappillil et al. [1997] started from the electric field
expression (4) obtained using the Lorentz condition
technique, applied the continuity (3¢), and obtained a field
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expression completely in terms of charge density. The
expression for electric field at ground level from
Thottappillil et al. [1997] is reproduced below (their
expressions 4 and B31).

EV(r’t) =
L'(t)
t—R(z")/c)dz
m j T P = RE)
3 7
L 57 520
p He 2eR2(), |op(t = RE)C) .
271'80 1 tan_l(_) ot
0| __ r
z cr
L'@)
1 j z' azp(z',t—R(z')/c)dz,
27gy J c2R(z") or?
3 L'
1 2cR2(L') dL(t)
- L',t—R(L")/
2| (2 [P REVOTT

2 cr

RO a(p(L,t R(L)/c)dL'(t)]

27r£0 c2R(L") ot
N4 9
oLt~ R(L)/c)( - ] . )

_ 1 sin 2a(L')
27t£0 c2R(L")

The current and charge density in (4) and (9), respectively,
are related by the continuity equation (3c), used by
Thottappillil et al. [1997]. The first term of (9) represents
the electrostatic (R® dependence) field component; the
sum of second and fourth terms represents the induction
(R* dependence; note that the terms containing the inverse
tangent can be transformed using trigonometric functions
to obtain the R dependence) field component; and the
sum of third, fifth, and last terms represents the radiation
(R" dependence) field component. Note that in the last
term of (9) sina(L’) = r/R(L"). The last three terms in (9)
are nonzero only if there is a discontinuity at the return
stroke wave front.

The electrostatic, induction, and radiation components
in (9) are equivalent to the corresponding components in
(4) because the former are analytically derived from the
latter. This is illustrated by a numerical example given
below. The vertical electric field on ground at a distance
of 1 km was calculated using both (4) and (9). The
individual field components and the total field are shown
in Figure 9. As before, the transmission line model is
used and a constant return stroke speed v is assumed. The
charge density in (9) corresponding to the TL model is
given by the application of the continuity equation (3c),
which can be written in another form as [Thottappillil et
al., 1997, equation (B6)]

'“t—R(z")/c) =

plz' (z? c) (10)
~di'- Ii(z',r—R(z')/c)dr.
z

Z'/v+R(z") ¢
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Figure 8. Same as Fig. 6, but at a distance of 100 km.
The spatial and temporal derivatives of retarded currents where .
in the return stroke channel for the TL model are related Frp — (13)
by [Thottappillil et al., 1998, equation (34)] 1+v

6i(0,t ~2'/v-R(z")/c) _

oz' (11)
_8i01-21v-R@)/e) 1 (| vz-reosd
ot v c Rz) J

Carrying out the differentiation in (10), applying (11), and
noting that for an observer at ground level 8= 90°, we get

ozt =R/ c)= i(0,t —z'/v—R(z")/ c) ,

(12)

V'FTL

600 1
S
<400
R
Q@ Electrostatic
w
[3)
8
9200 -
L
Induction
Radiation
0 : . : -
0 2 8

* Time (8)
Figure 9. Comparison of the total electric field and the
individual field components computed at a distance of 1
km using the transmission line model and field
expressions (4) and (9). A total of eight curves are shown,
four for (4) and four for (9). Because the agreement
between the corresponding curves is excellent, it is
impossible to distinguish between them in the plot.

cR(z")

In Figure 9, the total field and individual field components
at a distance of 1 km are shown for both (4) and (9).
However, the agreement between the two corresponding
curves in each case is so good (to several decimal places)
that it is impossible to distinguish between them.
Equations (4) and (9) were additionally compared by
calculating the fields at distances of 50 m and 100 km and
again in each case an excellent agreement was found.
Further, a comparison of (4) and (9) was also done by
calculating the electric fields at 50 m, 1 km, and 100 km,
using other return stroke models such as the BG, TCS,
DU, MTLL, and MTLE models [Rakov and Uman, 1998],
and again an excellent agreement was obtained in each
case. Thus we conclude that the suggestion of Thomson
[1999] that the field expressions given by Thottappillil et
al. [1997] may be erroneous is incorrect.

Appendix A

The objective here is to derive the scalar potential using
the vector potential and Lorentz condition (case 1). The
lightning return stroke channel can be modeled as a
straight line fixed at one end A, with the other end
extending with speed v [Thottappillil et al., 1997]. The
coordinates are defined in Figure Al. At time ¢ = 0 the
return stroke starts to propagate from origin A. The
observer at the fixed field point P sees the return stroke
starting to propagate from the origin at time ¢ = r/c, where
¢ is the speed of light. The retarded current at any
elemental channel section dz'is given by i(z',t - R(z')/¢),
where z' is less than or equal to L(f), the length of the
return stroke channel seen by the observer at P at time ¢.
If the return stroke wave front moves at a constant speed
v, then L {¢) is obtained from the solution of the equation ¢
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L'® '
dz—b:
T 1
A
Figure Al. Geometry of the problem.
= z/v+R(L")/c. Note that the assumption of constant

return stroke speed is not required in the derivations
presented here.

The vector potential at P due to the entire extending
channel is given by [Thottappillil et al., 1998, equation

O]

L'(l’)_ 1 '
1 . Il(z’T_R(z)/C)Edz',

A(r,0,7)= .
4meyc R(z")

(A1)

where 7is a time less than or equal to time ¢. At time 7,
return stroke wave front is seen at a height L{7) by the
observer at P and L {7) is less than or equal to L {#). Note
that in (A1) we have not considered the presence of
ground, usually assumed to be perfectly conducting and
replaced by the channel image.

The total electric field can be calculated using the
relation
a4

E=—V¢_E,

(A2)

where ¢ can be obtained from the Lorentz condition
Ved+(1/c2)dp/0t=0, as

t
é(r,0,1) = -c? IV e Adr.

(A3)
rle
Taking the divergence of (A1), it can be shown that
Ve Z(r,ﬂ, ) =
z-rcosf ., . .
. L(r) R—3(z'5_'(2 .T=R(z)/¢c) . (A4)
dmeyc? z'-rcos@ 6i(z',t - R(z')/c)
cR%(z') or
1 L'(r)-rcosf ..., , dL'(r)
dmegc® cRA(LY) L -RUle) dr

Substituting (A4) into (A3) and interchanging the order of
integration, an expression for the scalar potential
completely in terms of current can be obtained. As time
increases from r/c to ¢, the channel length L(7) increases
monotonically from 0 to L(#). Therefore the order of
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integration can be changed as follows according to the
standard rule:

t L) L)«
= , (A5)

rle 0 0 7

where the lower limit 7 = f, is the time at which the
observer at the field point sees the return-stroke front at
height z” for the first time. For a constant return stroke
speed v,

L) RE@) | F L RE)
A% c v c

Performing the operations explained above and after some
reductions, we get an expression for scalar potential as

#r0.0) = -
, t
z -ZCO'SG J‘i(z’,t ~R(z")/cHr
L'(t) B R()
t ENELC
_ 1 J‘ v ¢ ” (A6)
4rgy z'-rcosd i1~ R@)/e)
cR3(z")
L J

From (A6) one can readily obtain expression (A8) of
Uman et al. [1975], which gives the scalar potential of an
elemental current dipole. For a return stroke channel
perpendicular to a plane and the observer at this plane (6=
90°), (A6) reduces to (1).

Appendix B

The objective here is to show that the scalar potential
given in case 2 satisfies the Lorentz condition if current
and charge density are related by the continuity equation
used by Thomson [1999]. In Appendix C we will show
that there is a different, but equivalent expression for the
scalar potential (case 3) that satisfies Lorentz condition if
the charge and the current are related by the continuity
equation used by Thottappillil et al. [1997].

In both Appendices B and C the return stroke channel
is assumed to be straight and vertical, and the ground
plane is not taken into account. The expression for the
potential at P (see Figure A1) corresponding to case 2 is

#(r.0,1) = 41 Qu=rie)
TTEY r (Bl)
1P
_ *x{" ¢ _ '/ '
+4”€0 (;[R(z')p (z,l R(z") c)dz,
where
t
Ot-rlc)=- ji(O,r—r/c)dr (B2)

rle
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and

op*(z',t - R(z")/ c)
ot
_aiz' 1= R(z)/¢)
oz'

t-R(z")/ c=const -

Taking the time derivative of (B1), we obtain

op(r,0,t) 1 i0,e-r/c)
ot 4rey r
L@ 0 '
L] j- 1 op*(z ,t—R(z)/c)dz,
4reg ; R(Z") ot

1 p*(L,t—R(L)/c)dL
47, R(L) ar’

Applying (B3) to the second term of (B4), we get

oy 1

i(0,t—r/c)
ot 4rey r

1 ai(z,t - R(z)/c)|

) ()
- J dz'
4re, ; R(z") oz'

R
t——=const
c

1 p*(L't-R(L)/c)dL
47, R(L") dr’

Now,

di(z',t—R(z)/c)
e
di(z',t - R(z")/ )

oz'

R
t——=const
c

. di(z',t - R(2')/¢) 8lt - R(z")/ c)
at - R(z"Y/c) o'

>

at-R()/c) _ z-rcosd
o' cR(z')

ai(z',t = R(z")/¢) _ ailz,1 = R(z")/ )
t-RiEYe) or

Substituting (B8) and (B7) in (B6) and rearranging the

terms, we obtain

di(z',t - R(z")/ ¢)
o' t—R/c=const
ai(z',t - R(z')/c)
pX
. z'-rcos8 6i(z',t —R(z')/c)
cR(z") ot

Substituting (B9) in (B5), we get
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op(r.0,) _ 1 i0r—r/c)
ot 4re r
L 1 ai(z',t - R(z")/c)
(B3) ‘t) R ' a '
1 (z) z i (B10)
47, ol z'-rcos@ 8i(z',t ~R(z")/c)
cR2(z") ot
L1 p*(L',t - R(L")/c) dL'
4re, R(L") dr’

Integration by parts of the second term of (B10) yields

L
(B4) Py dife' - RE)Ie),, _
0 R(z") oz' )

L)

[R(l ')i(z’,t - R(z')/c):l
V4
0 (Blla)
L —z'+rcoséd
- I —R—-"(z—')_i(z"t - R(z')/c)dz' ,

(B5) which can be simplified as

g
T ai(z',t - R(z")/ )

J-R' w C T
J (z") z

(L =R(LYe)  i0,e=ric) (B11b)
R(L") r

i(z',t - R(z')/c)dz' .

Substituting (B11b) in (B10) we get

(B6)
Op(r,0,t) _
a
z'-rcos@ .
L) 3 i(z',t = R(z")/c)
1 R (')
B7) — -—— j , &
4rey ol 2'-rcosf di(z',t - R(z")/c)
CRZ(Z') ot (B12)
(BS) L] p*(L',t = R(L')Y/ c) dL'(r)
4re, R(L) dt
1 (L -R(LY/c)
4rs, R(L") '
From (3e), for the case z’= L {¢), we get
p*(L't=R(LY/¢) = p(L't-R(L) ¢
(B9) ) (B13)

_ L'-rcosd
cR(L")

L= R(LY/c).

Also, the relationship between current and charge density
at the wave front according to (3c) is given by
[Thottappillil et al., 1997] as
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i(L',z-R(L')/c)=p(L',z—R(L')/c)ii%t(’l, (B14)
Application of (B13) and (B14) in (B12) gives
0¢(r.0,1) _
ot
| Lo z rco's)H i(z,t- R(z")/c)
— dz'
4re, z'-rcosé ai(z',t - R(z')/c) § (B15)
cR2(z") ot
1 L'-rcos@ dr' (t)

_47r€0 cR(LY) (L’t R(L)/) dt

The divergence of vector potential is derived earlier in
Appendix A (see (A4)). From (B15) and (A4) at time ¢,
we can see that the Lorentz condition is satisfied. That is,

1 34(r,6,1)

Ved 0t+
(r,6,1) ™

-0 . (B16)

Thomson [1999] has also shown that the formulation of
continuity equation with retarded time kept constant
satisfies the Lorentz condition, but did not present any
explicit expression for the scalar potential, such as (B1).

If we write (B15) for a time 7, where 7 is less than or
equal to #; integrate (B15) between limits »/c to #; and
change the order of integration according to (AS), we get
an expression for scalar potential identical to that given by
(A6) corresponding to case 1.

Appendix C

Here we show that the continuity equation used by
Thottappillil et al. [1997], i.e., the formulation of the
continuity equation without keeping the retarded time
constant (the whole-partial derivative of the retarded
current with respect to z' is taken), is also consistent with
the Lorentz condition, provided that a proper scalar
potential is defined. Note that (C1) can be derived from
(B1), using (B3), (B9), and (C4).

The assumptions used here are the same as in Appendix
B. Let us consider the scalar potential at P (Figure A1),

1 Q(l

47r0 r

5r0,0) = rlc)

L'@¢)
L] J‘a(z',t—R(z‘)/c)
4reg ; R(z")

dz' (&)

@ p(z',t - R(z')/c)
R(z")

dz',
47[6'0
0

where

t
Ji(O,r— rlcydr,

ric

Q@-ric)=- (€2)
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oz, t-R(z")/c) = ©3)

z'-rcosé (

R Jt=R(Z' )/c)

and

8p(z',t - R(z‘)/c) _ 6i(z',t - R(z')/c)
or - o' ’

(C4)
Taking the time derivative of (C1), we get

p(r0,t) 1 i0;~rlc)
ot 4reg r

1)
1 J‘ z'-rcosf 61(2 t—R(z)/c)
4re, cR?(z") or

£ 1 Bp(z t—R(z' )/c)d,

I (C5)
47[80 R(Z ) ot

B 1 L'-rcosé
4mey cR(LY)

1 p(L't—R(LY) ) dL'(2)
R(L" dr

(L' - R(L )/c)dl;(’)

471'50

Rewriting the third term of (C5) using (C4) as

L'
Q@ ap(z' t—R(z)/c)

47r£0 J' R(z") ot

L'()
1 aiz t—R(z)/c)

471'6‘0 R(z") oz'

and integrating by parts, we get

1 op(z',t—R(2 )/c)

I i -
47r£0 R(z") Ot

1 i(L,e=REY/c)
47, R(L"Y
1 i(0,t—r/c)
4re, r

(Co)

L'(t)
1 i[ z'-rcos@

R}(2)

i(z',t - R(z")/ c)dz'

-47r£
09

Replacing the third term of (C5) with (C6), applying
(B14), we get

op(r,0,1) _
o
z'-rcos@
)| ———ilz',t - R(z")/c
R ( ) (C7)
4re, z'-rcos@ az(zt R(z' )/c)
cR%*(z") ot
1 L'-rcosé (L’ {1~ R(L' )/c)dL(t)

4mz, cRE(L)
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Equation (C7) is identical to (B15) and satisfies the
Lorentz condition (B16). If we write (C7) for a time 1,
where t is less than or equal to ¢ integrate (C7) between
limits 7/c to ¢, and change the order of integration
according to (AS), we get an expression for scalar
potential identical to that given by (A6) corresponding to
case 1.

Appendix D

The purpose here is to find an expression for electric
field corresponding to case 2. Consider the vector and
scalar potentials for an extending channel as defined by
(A1) and (B1), respectively. The electric field can be
obtained using (A2). Using the spherical coordinate
system centered at the starting point of the return stroke at
ground (Figure Al) and ignoring the presence of ground
for the moment, we will show that the negative gradient of
the scalar potential -V ¢ and the negative time derivative of

the vector potential — 94/t can be found as described
below. For -V ¢ we have

_;_G_Q(t—r/c)
or r
L)
* (5" 4 _ '
.0 [ p*(z R(z)/c)dz,

0 R(Z'
r T RE)

L(t)
- %* 1 — 1
Lo jp (2.t R(z)/c)dz,_
0

—4ne,Vh =

(Dd1)

r 06 R(z")

Note that the first term of (B1) is independent of the
spatial coordinate 6. The maximum length of the channel
L'(f), as seen from the field point, is a function of 7, 6, and
¢ The distance to the field point from the differential
channel segment R(z') is a function of both r and 6, as
given by equations (D2a)-(D2c).

R(z) = Vr2+z'2-2rz'cos , (D2a)

dR(z") _ r- z'cosf , (D2b)
dr R()

drR(z') _ rZ sin @ . (D2c)
dé R(z'")

Carrying out the differentiation of the second and third
terms in (D1) and using (D2a)-(D2c), we obtain the
following expression:

—‘47[50V¢ =
r—z'cos@ , ,
o) —-R—3('Z.—)—p*(z 1= R(z)/c) ]
F j dz'
0l r—z'cosd op* (z‘,t - R(z')/c)
cR%(z") ot |
z'siné , ,
L1 'E;(?)'P*(Z = R(z)/c) Q‘
+0 dz'
Z'sinf Op* (z‘,t - R(z')/c)
cR%(z") ot | (D3)
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_p*(Lt—R(L)/c) oL

R(L" or
6 p*(L',t—R(L)/c)dL'
rR(L") 00
_;_6_Q(t—r/c) .
or r

The time derivative of vector potential is given by

aiz',t - R(z")/c) &

_ 1 (D4)
z 6[ 2R(@) a

(L't - R(L)/c) dL'
AR(L)  dt’

where %= Fcosf - fsiné . (DS)

The general expression for electric field at a field point
can be found by combining (D3), (D4), and (D5). We are
interested in the return stroke field at ground level. For
this case, @ = 90°, and therefore cos 6= 0, sin 8= 1, and
§=_3. The unit vector 7 is now horizontal, pointing

away from the channel. A perfectly conducting plane at z'
— 0 is introduced to simulate the effect of Earth. Using the
image theory, we can replace this plane by an image
channel carrying current in the same direction as the
actual channel.  Writing out the equations for image
channel and adding them to (D3) and (D4) for the case 8
= 90°, we get the expression for electric field, equation

(6).

Appendix E

In this appendix the electric field expression
corresponding to case 3 is derived. The relationship
between the charge densities corresponding to case 2 and
case 3 are given by equations (3d) and (3e). For an
observer at ground level (6= 90°), these equations become

oplz',1 ~R(z)/¢) 8p*(z’,t—R(z')/c)

ot - o
El
+ z' ai(z',t—R(z')/c) E1)
R(Z') at ’
Az, t-R@)c) = p*(z,t-R@E)le)
\ (E2)

+

i(z',t - R(z')/c) .

Zl

Substi‘tuting (E1) and (E2) in (6), the expression for
electric field corresponding to case 2, we get
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EV(r)t) =
L'(r)

l ' ' '
6[ —IF?(—Z‘—)p(Z = R(z")/c)dz

2reg

Lo,

i(z',t - R(z')/c)dz

e [=—=
2reg ; cR*(z")

‘l L'(t) ] ' )
_ J z 8p(z,t—R(z )/c)dz,
27[80

2/
; cR*(z") ot
L't
1 I) 2?2 6i(z',t—R(z')/c) ,
+ dz
2rgg ; 2R3(2") ot
o
1 @ di(z',t - R(z")/ ¢) &
27g, : c2R(z") ot
1 L) dL'
- L',t—R(L)/c
278, cR2(L')p( /el
1 L2 dL'
L', t—R(L")/
27y 2R3(L') v el
1 i(L't-R(L )/c)dL (E3)
27eg cAR(L') dt

After simplification and noting that sina(z’) = r/R(z’), and
cosa(z) = -z7R(z"), (E3) can be written as given by (8).
Equation (8) is the electric field expression corresponding
to case 3, in which the line charge density and current are
related by the continuity equation (3c). The first term
(static term) of (8) is identical to the corresponding term
in (9), and the fourth and sixth terms (radiation terms) of
(8) are identical to the third and fourth terms of (4). In the
following it will be shown that the sum of the second,
third, and fifth terms (induction terms) of (8) is
analytically equivalent to the sum of second and fourth
terms (induction terms) of (9).

Integration by parts of the third term of (8) gives

Lw o,

1 z e , ,
J CR4(Z')I(Z st —R(z )/c)dz =

27e,
%9

, L)
1 z
T2 R ).
"(—)
+ p—

2 cr 0

i(z',t - R(z")/

27780

(E4)

1z

2 ch(z ),

1 tan'l(—)
+ 4 r

2 cr

L'~
1 I
27e,

°9

di(z’,t—R(z')/c).

Using the following two relationships [see Thottappillil et
al., 1997]

CALCULATING ELECTRIC FIELDS

di(z',t - R(z")/ c)= ~M—c—)dz',

ES
5 (ES)
(- R@Ye)= plera - Ry ) EL (E6)
equation (E4) can be written as follows:
L'(t) 2'2
(21— Rz oMzt =
272 (;I.—CRA(Z')I(Z’I R(z") c)dz
o
| 2Ry | () (E7)
e 1wm_l(L) (L't = R(LYY c)—===
I R
L 1
| (Jﬁ) 2cR2(Z') ap(z',t - R(z")/c) .,
- 4 7z
27[60 0 ]tan ( ) ot
2 e

Substituting (E7) for the second term in (8), applying (E6)
to the last term of (8), and adding similar terms, we get

I #'Z,) ozt~ R(2)/¢)dz!

5
TTEY b
3z
L) T 5300
L 2R | aple - REYe)
27g, 1“’"—]( ) o
ol|__ r
2 cr

L'(t)
1 JI‘ r? ai(z',t—R(z')/c)dz,
27[50

c2R3(z") ot
3L
1 2cRZ(L) ) dL(t)
o 1tan_,( ) (L', - R(L')/ ) ==2
2 o
NI E0)
27g, c2R3(L')p(L’t R(L)/c( dt )’ (E8)
Only the third term in (E8) is in terms of current. This

term can be completely expressed in terms of charge
density using the continuity equation (3c), as done by
Thottappillil et al. [1997]. Then expression (E8) becomes
identical to expression (9), the electric field expression
derived by Thottappillil et al. [1997].
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