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On the Interpretation of Ground Reflections Observed
in Small-Scale Experiments Simulating Lightning

Strikes to Towers
Yoshihiro Baba, Member, IEEE, and Vladimir A. Rakov, Fellow, IEEE

Abstract—Using the finite-difference time-domain (FDTD)
method for solving Maxwell’s equations, we have simulated small-
scale experiments intended to study the interaction of lightning
with towers. In these experiments, employing the time-domain re-
flectometry (TDR), the tower was represented by a conical con-
ductor placed between two horizontal conducting planes, and a
relatively high grounding impedance (about 60 Ω, constant or de-
creasing with time) of the bottom plane was inferred, based on the
assumption that a conical conductor could support propagation
of unattenuated waves in either direction. We have shown, using
the FDTD simulations, that a current pulse suffers no attenuation
when it propagates downward from the apex of the conical con-
ductor to its base, but it attenuates significantly when it propagates
upward from the base of the conical conductor to its apex. We show
that the current reflection coefficient at the base of the conical con-
ductor is close to 1, so that the equivalent grounding impedance of
the conducting plane is close to zero. Our analysis suggests that the
relatively high grounding impedance of conducting plane inferred
from the small-scale experiments is an engineering approximation
to the neglected attenuation of upward propagating waves. When
the dependence of cone’s waveguiding properties on the direction
of propagation is taken into account, the results of small-scale ex-
periments simulating lightning strikes to towers can be interpreted
without invoking the fictitious grounding impedance of conduct-
ing plane. Representation of a vertical strike object by a uniform
transmission line terminated in a fictitious grounding impedance
appears to be justified in computing lightning-generated magnetic
fields and relatively distant electric fields, but may be inadequate
for calculating electric fields in the immediate vicinity of the ob-
ject. This study was motivated by the growing interest in extending
lightning return stroke models to include a tall strike object and
calculating associated electric and magnetic fields.

Index Terms—Biconical antenna, finite-difference time-domain
(FDTD) method, ground reflection, lightning current, tall objects.

I. INTRODUCTION

D IRECT measurements of lightning currents on grounded
tall objects (e.g., Berger et al. [1], Gorin et al. [2],

Montandon and Beyeler [3], Zundl [4], Janischewskyj et al. [5],
Goshima et al. [6]) have provided important data on lightning
current parameters and the equivalent impedance of lightning
channel. Lightning current waveforms measured on a grounded
tall object may be influenced by reflections at the bottom and
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top of the object. If a grounded tall object struck by lightning
can be represented by a transmission line and current reflection
coefficients at the top and bottom of the object are known, it
is possible to evaluate lightning current that is not influenced
by the presence of the object from measured lightning current
(e.g., Rakov [7], Rachidi et al. [8], Bermudez et al. [9]). Validity
of the transmission-line representation of a grounded tall object
struck by lightning is investigated by comparing the model-
predicted field waveforms (lightning current measured at the
top of the object is usually used as an input) with the measured
field waveforms (e.g., Zundl [4], Motoyama et al. [10], Rakov
and Uman [11], Goshima et al. [6]). A uniform, lossless trans-
mission line representation is usually used, although a vertical
conductor above ground generally cannot be viewed as a uni-
form transmission line (e.g., Jordan [12], corrected by Wagner
and Hileman [13], Baba and Rakov [14]). Also, in analyzing
lightning surges on overhead power transmission lines struck
by lightning, representation of a transmission-line tower by a
short uniform lossless transmission line terminated at its bot-
tom end in the tower grounding impedance (e.g., Sargent and
Darveniza [15], Chisholm et al. [16]) has been widely used.
Several formulas for the characteristic impedance of grounded
strike object (tower) are found in the literature. In simplified
analyses (e.g., Sargent and Darveniza [15], Chisholm et al. [16],
Bermudez et al. [17]), the characteristic impedance derived for
an ideal biconical antenna (e.g., Balanis [18]) has been used,
apparently assuming that the lightning channel can be viewed
as the upper part of such an antenna and the strike object as its
lower part.

An ideal biconical antenna (or waveguide) comprises two
concentric conical conducting surfaces of infinite extent with
common apexes. It has constant input impedance equal to
its characteristic impedance (e.g., Balanis [18]). Thus, if it is
excited by a voltage or current source connected at its input
terminals (between the cone apexes), two current pulses prop-
agate, without attenuation or dispersion, away from the apexes
along the surfaces of the cones. The electromagnetic field struc-
ture associated with these unattenuated current pulses is spher-
ical TEM. It follows from the image theory that a vertical in-
verted conical conductor of infinite extent above a horizontal
conducting plane or a vertical conical conductor of infinite ex-
tent below a horizontal conducting plane, excited at its apex, is
equivalent to an ideal biconical antenna (except for the value
of input impedance; Balanis [18]). If the conical conductor (or
inverted conical conductor) is not infinitely long (it may be trun-
cated or be connected to a conductor of different geometry, for
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example, conducting plane), a reflected current pulse is gener-
ated at the cone termination and propagates toward the cone
apex. A biconical waveguide is not expected to behave as a uni-
form transmission line for a reflected current pulse propagating
toward the cone apex. This pulse should suffer attenuation, and
the associated electromagnetic field structure should be non-
TEM. To the best of our knowledge, the response of a biconical
waveguide to a current pulse propagating toward the excita-
tion point at its apex(es) has not been fully investigated yet. At
least the dependence of waveguiding properties of a biconical
antenna on the direction of wave propagation is generally not
recognized in the lightning literature.

In this paper, using the finite-difference time-domain (FDTD)
method (Yee [19], Taflove and Hagness [20]) for solving
Maxwell’s equations, we show that a current pulse suffers sig-
nificant attenuation and dispersion when it propagates along a
conical conductor toward its apex, in contrast with unattenuated
and undispersed propagation away from the cone apex. We ap-
ply this fact to the interpretation of ground reflections observed
in small-scale experiments simulating lightning strikes to tow-
ers. Note that a vertical conductor having a uniform thickness
(such as a cylinder or parallelepiped) above ground is outside
the scope of this paper. The propagation of current pulses along
such a vertical conductor has recently been examined by Kordi
et al. [21] and by Baba and Rakov [14].

The structure of the paper is as follows. In Section II, using
the FDTD method, we demonstrate that a current pulse suffers
no attenuation when it propagates along the surface of a conical
conductor away from its apex, but it attenuates markedly when
it propagates from the base of the conical conductor to its apex.
In Section III, we compare the results of FDTD simulations
with those of two small-scale experiments using a conical con-
ductor placed between two horizontal conducting planes and
excited at its apex, which were carried out by Chisholm and
Janischewskyj [22] and by Bermudez et al. [17]. Both groups
employed the time-domain reflectometry (TDR) to detect reflec-
tions from the bottom plane at the cone apex. In Section IV, we
show that the relatively high grounding impedance of the bottom
conducting plane inferred from the TDR measurements is fic-
titious and should be viewed as an engineering approximation
to the neglected attenuation of current pulse as it propagates
from the base of a conical conductor to its apex. Finally, in
Section V, we examine the representation of a tall object on a
conducting ground plane by a lossless uniform transmission line
terminated in a fictitious, relatively high grounding impedance,
as suggested by Bermudez et al. [17].

II. CURRENT PULSES PROPAGATING ALONG A CONICAL

CONDUCTOR EXCITED AT ITS APEX OR BASE

Fig. 1(a) shows a vertical, perfectly conducting cone of base
radius 8 cm placed between two horizontal perfectly conducting
planes 40 cm apart, to be analyzed using the FDTD method.
A current source, having a height of 1 cm and a cross-sectional
area of 1.5× 1.5 cm2, is inserted between the cone apex and
the top perfectly conducting plane. The source produces a
Gaussian pulse having an amplitude of 1 A and a half-peak

Fig. 1. (a) A perfectly conducting cone in air excited at its apex by a current
source having a height of 1 cm and a cross-sectional area of 1.5× 1.5 cm2

and (b) that excited at its base by a current source having a height of 1 cm
and an approximately circular cross-sectional area with a radius of 8.5 cm, to
be analyzed using the FDTD method. The current source produces a Gaussian
pulse having an amplitude of 1 A and a half-peak width of 0.33 ns. The working
volume of 2× 2× 0.4 m3, which is divided into 0.5× 0.5× 1 cm3 cells, is
surrounded by six perfectly conducting planes.

width of 0.33 ns. This current pulse propagates downward
along the surface of the cone, away from its apex, until it
encounters the bottom plane. Fig. 1(b) shows the same conical
conductor but excited at its base by a current source having a
height of 1 cm and an approximately circular cross-sectional
area whose radius is 8.5 cm. In this latter case, a current pulse
propagates from the base of the conical conductor to its apex.
The current source in the FDTD simulation is implemented by
imposing the magnetic field vectors along the closest possible
loop enclosing the current source (e.g., Baba and Rakov [14]).
Currents and fields are calculated up to 2.5 ns with a time
increment of 0.01 ns. The working volume of 2× 2× 0.4 m3,
shown in Fig. 1, is divided into 0.5× 0.5× 1 cm3 cells. Due to
such rectangular discretization, the conical conductor in Fig. 1
has a staircase surface (see Fig. 15(a) in Appendix). The lateral
dimensions of the volume are limited by perfectly conducting
planes, which do not influence current waves propagating on
the conical conductor for about 6 ns after current injection at
its apex or base. This configuration is similar to that used in
the small-scale experiments carried out by Chisholm et al. [16]
and by Chisholm and Janischewskyj [22].

Fig. 2(a) shows current waveforms at different vertical dis-
tances from the apex of the conical conductor excited at the apex
by a current source [see Fig. 1(a)], calculated using the FDTD
method. Fig. 2(b) is similar to Fig. 2(a), but for the cone excited
at its base. It is clear from Fig. 2(a) and (b) that the current pulse
does not attenuate when it propagates from the cone apex to the
cone base, but it attenuates markedly when it propagates from
the cone base to the cone apex. Fig. 3(a) shows waveforms of
vertical and horizontal electric fields at two points 40 cm away
from the apex of the cone shown in Fig. 1(a), calculated using
the FDTD method. Fig. 3(b) shows those at two points 40 cm
away from the base center of the cone shown in Fig. 1(b).
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Fig. 2. Current waveforms for the conical conductor excited at its (a) apex and
(b) base at different vertical distances from the current source, calculated using
the FDTD method. Note that the current pulse propagates from the apex to the
base (without attenuation) in (a) and from the base to the apex (with attenuation)
in (b).

The electromagnetic field structure around an ideal biconical
antenna, excited by a source connected between the cone apexes,
is spherical TEM (e.g., Balanis [18]). The theta-directed electric
field Eθ of the spherical TEM wave produced by an unattenuated
current pulse I propagating away from the excitation point of
the biconical antenna is given by

Eθ (r, θ, t) =
1

2πε0 sin θ
I(0, t − r/c) (1)

where ε0 is the permittivity of vacuum, c is the velocity of
light, r is the radial distance from the excitation point to the
observation point, θ is the angle between the antenna axis and
a straight line passing through both the excitation point and the
observation point (θ is to be larger than or equal to the half-cone
angle), and I (0, t) is the source current. Equation (1) applies to
the configuration presented in Fig. 1(a) until the current pulse
arrives at the cone base. Equation (1) with θ �= 0 also applies to
a zero-angle inverted cone above a conducting plane, that is, to
an infinitely thin wire above aground (Thottappillil et al. [23]).

For the configuration shown in Fig. 1(a), the vertical and hor-
izontal components, Ez and Eh , of the electric field can be eval-
uated by multiplying (1) by cos(π/2 − θ) and by sin(π/2 − θ),
respectively. For a spherical TEM wave, Ez (r = 40 cm, θ =
π/2), Ez (r = 40 cm, θ = π/4), and Eh(r = 40 cm, θ = π/4)
should be the same. For a source current pulse having a

Fig. 3. Waveforms of vertical and horizontal electric fields at two observation
points located (a) 40 cm away from the apex of the cone shown in Fig. 1(a) and
(b) 40 cm away from the base center of the cone shown in Fig. 1(b). The source
is located at the apex for (a) and at the base for (b). The fields are calculated
using the FDTD method.

peak of 1 A, the magnitude of these electric fields should be
150 V/m. This theoretical prediction for the configuration shown
in Fig. 1(a) is to be compared with the corresponding electric
field waveforms, calculated using the FDTD method and shown
in Fig. 3(a). All three waveforms in Fig. 3(a) are very similar,
which is consistent with the theoretical prediction, and mag-
nitudes of these electric fields are only 7% to 10% less than
the theoretical value (150 V/m). Therefore, the electromagnetic
field structure around the conical conductor excited at its apex
is essentially spherical TEM until a reflection from the bottom
perfectly conducting plane arrives at the observation point.

On the other hand, as seen in Fig. 3(b), electric field wave-
forms at the same observation points, calculated for the config-
uration shown in Fig. 1(b), differ considerably from each other.
This indicates that the electromagnetic field structure around
a conical conductor excited at its base is non-TEM. This im-
plies that in the configuration shown in Fig. 1(a) a current wave
reflected from the bottom plane also produces a non-TEM elec-
tromagnetic field structure.

In the following section, we will use the FDTD method to
simulate two small-scale experiments conducted by Chisholm
and Janischewskyj [22] and by Bermudez et al. [17] who used a
conical conductor between two horizontal conducting planes to
study the interaction of lightning with towers. These researchers
have detected a lower than expected current at the apex of the
conical conductor, via their voltage measurements at the top of
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Fig. 4. Configuration used in FDTD analysis simulating an experiment carried
out by Chisholm and Janischewskyj [22]. A perfectly conducting cone of a height
of 40 cm and base radius of 8 cm is located between two horizontal conducting
planes (see Fig. 15(a) in Appendix). The center conductor of a 50-Ω coaxial
cable connects the apex of the conical conductor with a 200-V step voltage
source via a series 50-Ω matching resistor. The outer shield of the 50-Ω coaxial
cable is connected to the top-conducting plane. The round-trip time of a wave
propagating from the voltage measurement point to the lower end of the cable
and back is 3.3 ns. The working volume of 2× 2× 0.86 m2 is divided into
0.5× 0.5× 1 cm3 rectangular cells.

the cone, and interpreted this result as being due to imperfect
reflection from the bottom plane.

III. FDTD SIMULATION OF SMALL-SCALE EXPERIMENTS

A. 40-cm High-Conical Conductor (Chisholm and
Janischewskyj [22])

Fig. 4 shows a perfectly conducting cone placed between two
horizontal conducting planes 40 cm apart, to be analyzed using
the FDTD method. This configuration simulates a small-scale
TDR experiment carried out by Chisholm and Janischewskyj
[22]. A step voltage of 200 V generated by the source (see
Fig. 4) divides equally between the 50-Ω series resistor and the
50-Ω characteristic impedance of the coaxial cable connecting
the source to the apex of the cone. As a result, a step voltage of
100 V (=200 V × 50 Ω/(50 Ω + 50 Ω)) is applied to the apex
of the conical conductor. Voltage between the center conductor
and the outer shield of this coaxial cable is monitored near the
source (44 cm above the cone apex). The coaxial cable in this
FDTD simulation has a square cross section. The side of the
square center conductor is 1 cm, and the inner side of the shield
is 3 cm. There is no formula for the characteristic impedance of
such a cable. Hence, we evaluated its characteristic impedance
from the ratio of the applied voltage and current, both calcu-
lated using the FDTD method. The characteristic impedance
was estimated to be 55 Ω when the relative permittivity of the
medium between the center conductor and the shield was 1. We
set the relative permittivity of the medium to 1.21 in order to
obtain 50-Ω(= 55 Ω/

√
1.21) characteristic impedance for the

simulated cable, which is equal to the characteristic impedance
of the cable used in the experiment. The propagation velocity
of a wave on this cable is 27 cm/ns (=30 cm/ns/

√
1.21). The

round-trip time of a wave propagating from the voltage measure-
ment point to the lower end of the cable (apex of the cone) and
back is 3.3 ns (=2 × 44 cm/27 cm/ns), which is equal to that
in the experiment. In order to reproduce the voltage waveform
recorded at the source by Chisholm and Janischewskyj [22] and

Fig. 5. Voltage waveforms at the top end of the 50-Ω cable (at the voltage
source) measured (thinner solid line) by Chisholm and Janischewskyj [22] and
calculated (thicker solid line) using the FDTD method for the configuration
shown in Fig. 4. Also shown is the waveform (broken line) corresponding to
the case of a 140-Ω uniform transmission line short-circuited at its bottom end,
calculated by Chisholm and Janischewskyj [22].

shown in Fig. 5 (thinner solid line), we performed calculations
up to 12 ns with a time increment of 0.01 ns.

Also shown in Fig. 5 (thicker solid line) is the voltage wave-
form calculated using the FDTD method for the configuration
shown in Fig. 4. The calculated waveform agrees fairly well
with the measured waveform. The first reflection from the junc-
tion between the 50-Ω coaxial cable and the conical conductor
arrives at the voltage measurement point around 3.3 ns, and
the second reflection from the bottom-conducting plane arrives
there around 6 ns. Magnitudes of measured and calculated volt-
ages in Fig. 5 are almost constant from 0.2 to 3.3 ns because
of the constant characteristic impedance of the cable. The con-
stant magnitude of voltage from 3.4 to 6 ns indicates that the
characteristic impedance of the cone is constant until the wave
propagating downward from the cone apex encounters the bot-
tom conducting plane. During this latter interval, the magnitude
of the incident voltage calculated using the FDTD method is
Vinc = 100 V, and that of the reflected voltage is Vrefl = 46 V
(=146 V − 100 V; see Fig. 5). The relation between Vrefl and
Vinc is given by

Vrefl = ρtVinc =
Zcone − Zcable

Zcone + Zcable
Vinc (2)

where ρt is the voltage reflection coefficient at the top of the cone
for downward propagating waves, Zcable (=50 Ω) is the charac-
teristic impedance of the cable, and Zcone (unknown quantity)
is the characteristic impedance of the conical conductor below
the horizontal conducting plane. From (2) with Vinc = 100 V,
Vrefl = 46 V, and Zcable = 50 Ω, one can evaluate Zcone to be
135 Ω. The characteristic impedance of a conical conductor be-
low a horizontal conducting plane excited at their junction is
equal to one-half of the characteristic impedance of biconical
antenna and given (e.g., Balanis 1997 [18]) by

ZC (α) = 60 ln
(
cot

α

2

)
(3)

where α is the half-cone angle. Since α = 11.3◦(= tan−1

(8/40)) for the cone shown in Fig. 4, its characteristic
impedance, according to (3), is equal to 140 Ω. A similar
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Fig. 6. Configuration used in FDTD analysis simulating an experiment carried
out by Bermudez et al. [17]. A perfectly conducting cone of a height of 94.5 cm
and base radius of 2.5 cm, having a short bulge at a height of 60 cm, is located
between two horizontal conducting planes (see Fig. 15(b) in Appendix). The
center conductor of a 50-Ω coaxial cable connects the apex of the cone with a
voltage source via a series 50-Ω matching resistor. The outer shield of the 50-Ω
coaxial cable is connected to the top conducting plane. The round-trip time of
a wave propagating along the cable from the voltage measurement point to the
lower end of the cable and back is 6 ns (=2 × 81 cm/27 cm/ns). The working
volume of 2× 2× 1.785 m2 is divided into 0.5× 0.5× 1.5 cm3 rectangular
cells.

value was obtained by Chisholm and Janischewskyj (1989 [22])
from their TDR measurements. The value of the characteristic
impedance of the cone below the horizontal conducting plane
obtained from the FDTD simulation, 135 Ω, is only 3%–4%
less than the theoretical value given by (3) or the experimentally
determined value.

Chisholm and Janischewskyj [22] have modeled the config-
uration of their small-scale experiment (see Fig. 4) by a 50-
Ω lossless uniform transmission line (representing the cable)
connected in series with a 140-Ω lossless uniform transmis-
sion line (representing the conical conductor) terminated in zero
impedance (expected for a conducting plane). Using this model,
they obtained a voltage waveform (broken-line curve in Fig.
5) at the source that coincided with the measured waveform
shown in Fig. 5 for times up to 6 ns but dropped abruptly to
about 70 V after 6 ns. Chisholm and Janischewskyj [22] “fixed”
this discrepancy introducing a fictitious grounding impedance
(initially about 60 Ω) of the perfectly conducting plane. We
will discuss further the interpretation of ground reflections ob-
served in small-scale experiments in Section IV, and the uniform
transmission line representation of a tall object on a conducting
ground plane in Section V.

B. 95-cm High-Conductor Simulating the CN Tower
(Bermudez et al. [17])

Fig. 6 shows a perfectly conducting conical conductor having
a short bulge (see Fig. 15(b) in Appendix) and representing the

Fig. 7. Incident voltage waveform measured by Bermudez et al. [17] at the
top end of the 2-m long 50-Ω cable. It was doubled in magnitude and used
as the source voltage in the FDTD simulation. The magnitude doubling was
needed to account for the voltage divider formed by the 50-Ω series resistor and
the characteristic impedance of the cable (8.8 V × 50 Ω/(50 Ω + 50 Ω) =
4.4 V). Note that, in both the experiment of Bermudez et al. [17] and the FDTD
simulation, the cables are long enough (2 m in the experiment and 81 cm in the
simulation) to separate the incident and reflected pulses in voltage records at
the source.

553-m CN Tower in Toronto, Canada, which is placed between
two horizontal conducting planes 94.5 cm apart. This config-
uration, to be analyzed using the FDTD method, simulates a
small-scale experiment carried out by Bermudez et al. [17]. We
use a 94.5-cm conductor in the FDTD simulation instead of the
95-cm conductor employed by Bermudez et al. [17] because we
represent it using rectangular cells having a vertical dimension
of 1.5 cm. A voltage pulse having an amplitude of 4.4 V, shown
in Fig. 7, is applied to the top of the 94.5-cm tower through a
50-Ω coaxial cable that is simulated in the same manner as the
cable used in Section III-A. Voltage between the center conduc-
tor and the outer shield of this coaxial cable is monitored near
the source (81 cm above the cone apex). The round-trip time of a
traveling wave between the voltage measurement point and the
lower end of the cable is 6 ns (=2 × 81 cm/27 cm/ns). Since
the round-trip time is greater than the total pulse duration, about
5 ns, the incident and reflected pulses should be well separated
in voltage records at the source. Calculations were performed
up to 12 ns with a time increment of 0.01 ns. Note that in the
experiment of Bermudez et al. [17], the voltage measurement
point was 2 m (versus 81 cm in our simulation) above the cone
apex. This is why no reflection is seen up to 12 ns in Fig. 7, but
this does not influence the analysis presented here.

Fig. 8 shows the voltage waveform measured by Bermudez
et al. [17] (thinner solid line) and that calculated using the
FDTD method (thicker solid line) for the configuration shown
in Fig. 6. The voltage waveform corresponding to the case
of a 240-Ω uniform transmission line, representing the cone,
short-circuited at its bottom end, is also shown as a reference
(broken line in Fig. 8). The latter waveform was calculated by
using the Bergeron method (Dommel 1969 [24]). Note that the
incident voltage pulse (see Fig. 7) is not shown in Fig. 8, only
voltage pulses reflected from the top and bottom of the vertical
conductor (tower model). In the FDTD simulation, the magni-
tude of the incident voltage pulse is Vinc = 4.4 V (see Fig. 7),
and that of the first reflected voltage pulse from the junction
between the coaxial cable (Zcable = 50 Ω) and the apex of
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Fig. 8. Voltage waveforms at the top end of the 50-Ω cable (at the source) mea-
sured (thinner solid line) by Bermudez et al. [17] and calculated (thicker solid
line) using the FDTD method for the configuration shown in Fig. 6. Also shown
is the waveform (broken line) corresponding to a 240-Ω uniform transmission
line short-circuited at its bottom end, calculated using the Bergeron method
(Dommel [24]). Note that the incident voltage pulse (see Fig. 7) is not shown
here, only voltage pulses reflected from the top and bottom of the tower model.

the conical conductor (Zcone is unknown) is Vrefl = 2.85 V
(see Fig. 8). From (2) with Vinc = 4.4 V, Vrefl = 2.85 V, and
Zcable = 50 Ω, one can evaluate the characteristic impedance
of the conical conductor to be Zcone = 235 Ω. Also, from
the measured magnitudes of the incident and reflected voltage
pulses (Vinc = 4.4 V, Vrefl = 2.77 V; see Figs. 7 and 8), one can
evaluate the characteristic impedance of the conical conductor
to be Zcone = 220 Ω. The FDTD-estimated value of the char-
acteristic impedance 235 Ω is 7% higher than the experimental
value 220 Ω and about 10% lower than the theoretical value
260 Ω calculated using (3). It is worth noting that the equation
for characteristic impedance of a conical conductor excited at its
apex, proposed by Sargent and Darveniza [15] yields 240 Ω for
the cone shown in Fig. 6. This equation is reproduced as follows:

ZC (α) = 60 ln(
√

2/ sin α) (4)

where α is the half-cone angle. The FDTD-estimated value 235
Ω is similar to the theoretical and experimental values.

As seen in Fig. 8, the FDTD-simulated waveform well repro-
duces the measured one. Bermudez et al. [17] have demonstrated
that a model, which comprises a 50-Ω uniform transmission line
representing the cable and a 240-Ω uniform transmission line
representing the vertical conical conductor terminated at its bot-
tom in a 60-Ω lumped grounding impedance, is capable of re-
producing the magnitude of the second reflection (voltage wave
reflected from the bottom-conducting plane) measured in their
small-scale experiment (see the negative, thinner solid line pulse
in Fig. 8). We will further discuss this latter model in Section V.

IV. INTERPRETATION OF GROUND REFLECTIONS ARRIVING AT

THE TOWER TOP

As noted in Section III, ground reflections observed at the top
of small-scale tower models are smaller than expected for the
case of perfect reflection (current reflection coefficient equal to
1) at the grounding plane and unattenuated upward propagation
of reflected waves. This experimental result can be interpreted in
three different ways: 1) The current reflection coefficient at the

Fig. 9. Current waveforms, calculated using the FDTD method for the con-
figuration shown in Fig. 4, at different vertical distances from the cone apex.
In these calculations, we employed a voltage source that produced a Gaussian
pulse having an amplitude of 200 V and a half-peak width of 0.33 ns.

grounding plane is less than 1 and upward-propagating waves
experience no attenuation. 2) The current reflection coefficient
at the ground plane is equal to 1, and the observed current deficit
at the tower top is due to attenuation of upward propagating re-
flected waves. 3) The current reflection coefficient at the ground-
ing plane is less than 1, and upward-propagating reflected waves
suffer attenuation. In the following, we will examine the cur-
rent reflection coefficient at the grounding plane, using FDTD
simulations and image theory. We will show that this coefficient
should be close to 1, which, along with the observed attenuation
of the ground reflection, rules out interpretations 1) and 3).

Fig. 9 shows current waveforms, calculated using the FDTD
method for the configuration shown Fig. 4, at different vertical
distances along the cone axis from its apex. In these calculations,
we employed a voltage source that produced a Gaussian pulse
having an amplitude of 200 V and a half-peak width of 0.33 ns.
Before 4 ns, the amplitude of current pulse, propagating down-
ward along the surface of the conical conductor, away from its
apex, is constant (1.12 A; see the four pulses at distances of 0
to 30 cm from the cone apex in Fig. 9). This is because a con-
ical conductor (below a horizontal conducting plane) behaves
as a uniform transmission line when a current pulse propagates
away from the apex of the cone. The amplitude of current pulse,
which reflects from the ground plane and propagates toward
the cone apex (see the two pulses labeled 30 cm and 20 cm
after 4 ns in Fig. 9), decreases with decreasing distance to the
cone apex [see also Fig. 2(b)]. Thus, interpretation 1), adopted
by Chisholm and Janischewskyj (1989 [22]) and Bermudez
et al. [17], is ruled out.

Using the method of images, we can replace the configura-
tion shown in Fig. 4 by its equivalent shown in Fig. 10, where
the bottom perfectly conducting plane of Fig. 4 is replaced
by the image-conducting cone. Current pulse reflected at the
bottom plane in Fig. 4 corresponds to the upward-propagating
current pulse in Fig. 10 when it passes through the zero-potential
plane. This upward-propagating pulse injected into the upper
conical conductor must be identical (due to symmetry) to the
downward-propagating pulse injected into the lower conical
conductor. In other words, there must be a perfect reflection
(reflected current equal to incident current) at the perfectly
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Fig. 10. Configuration equivalent to that shown in Fig. 4 for examining the
production of the first reflection at the bottom of the cone, in which the bottom
plane, assumed to be perfectly conducting, is replaced by the image cone.
The position of that plane (imaginary zero-potential plane in this equivalent
configuration) is indicated by horizontal dotted line.

conducting plane, that is, the current reflection coefficient must
be equal to 1. Therefore, a significant reduction in reflected cur-
rent magnitude, relative to the incident current wave magnitude,
at a perfectly conducting ground plane, or current reflection
coefficient less than 1, cannot occur unless there is a lumped
impedance (grounding impedance) between the bottom of the
conductor and the reference ground plane. This argues against
both interpretations 1) and 3).

From the above results, it appears that the deficit of current
observed at the tower model top is only due to attenuation of
current waves propagating upward, toward the tower model top,
as opposed to being due to nonperfect reflection at the grounding
plane or both.

V. TRANSMISSION LINE REPRESENTATION OF A TALL OBJECT

ON A GROUND PLANE

In Sections II and IV, we have shown that a current pulse
does not attenuate when it propagates from the apex of a conical
conductor to its base but it does attenuate significantly when
it propagates from the base of a conical conductor to its apex.
Therefore, a transmission-line representation of the configura-
tion shown in Fig. 4 should be a circuit, a portion of which has
properties that are dependent on the direction of propagation.
Such circuit is shown in Fig. 11(a). In this model, the conical
conductor is represented by two lossless transmission lines, one
of which is a uniform line for waves propagating away from
the cone apex, and the other is a nonuniform line, whose char-
acteristic impedance increases with decreasing distance to the
cone apex, for waves propagating toward the cone apex. This
representation reproduces (at least qualitatively) the decrease in
magnitude of a current pulse propagating toward the cone apex
observed in the FDTD simulations. However, such a model is
not well suited for engineering applications, since it requires

Fig. 11. Transmission line (TL) representations of the configurations shown
in Figs. 4 and 6. (a) Conical conductor located between two horizontal conduct-
ing planes is represented by two lossless transmission lines, one of which is a
uniform line for waves propagating away from the cone apex and the other is
a nonuniform line, whose characteristic impedance increases with decreasing
distance to the cone apex, for waves propagating toward the cone apex. (b)
Conical conductor located between two horizontal conducting planes is repre-
sented by a single lossless, uniform transmission line (for both downward- and
upward-propagating waves) terminated at its bottom end in a fictitious ground-
ing impedance Zg of the bottom conducting plane. This representation was used
by Bermudez et al. [17].

switching between the two transmission lines depending on the
direction of propagation. Further, there is no formula to calcu-
late the characteristic impedance of the nonuniform transmis-
sion line representing a conical conductor for a current pulse
propagating toward the cone apex.

Fig. 11(b) shows an alternative representation of the con-
figuration shown in Fig. 4, which is a single lossless uniform
transmission line terminated in a fictitious lumped grounding
impedance, Zg , of the bottom conducting plane. This model
was adopted by Bermudez et al. [17] who, in effect, lumped at
the base of the cone the distributed current attenuation due to
partial downward reflections in the nonuniform line, represent-
ing the cone for upward traveling waves in Fig. 11(a). Such an
approach allowed them to eliminate the nonuniform line needed
in the model shown in Fig. 11(a), but required a fictitious lumped
resistor at the cone base.

Fig. 12 shows the voltage waveforms at the top of the
50-Ω cable (at the voltage source), calculated using the model
shown in Fig. 11(b), and that measured by Chisholm and Janis-
chewskyj [22]. We assume the lumped grounding impedance to
be 60 Ω or equal to 60 h/(ct), where h is the height of the cone,
c is the velocity of light, and t is the time, in the traveling wave
calculations using the Bergeron method (Dommel [24]). Note
that 60 h/(ct), suggested by Chisholm and Janischewskyj [22],
is the characteristic impedance of two horizontal conducting
planes excited at the center by a cylindrically expanding TEM
wave (Marcuvitz [25]). In the calculations employing the time-
varying lumped grounding impedance, we assumed t to start
from h/c, following the method employed by Chisholm and
Janischewskyj [22]. The waveform calculated assuming the
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Fig. 12. Voltage waveforms at the top end of the 50-Ω cable (at the voltage
source) measured by Chisholm and Janischewskyj [22] and calculated using the
model shown in Fig. 11(b). We assume the lumped grounding impedance to be
60 Ω or equal to 60 h/(ct), where h is the height of the cone, c is the velocity
of light, and t is the time, in traveling wave calculations using the Bergeron
method (Dommel [24]). In the calculations employing the time-varying lumped
grounding impedance, we assume t to start from h/c, following the method
employed by Chisholm and Janischewskyj [22].

Fig. 13. Voltage waveforms at the top end of the 50-Ω cable (at the volt-
age source) measured and calculated for the model shown in Fig. 11(b), both
taken from Bermudez et al. [17]. In the calculations, the constant characteristic
impedance of the 95-cm conical tower was set to 240 Ω and the lumped ground-
ing impedance was assumed to be 60 Ω. Note that the incident voltage pulse
(see Fig. 7) is not shown here, only voltage pulses reflected from the top and
bottom of the tower model.

apparent grounding impedance to follow 60 h/(ct) reproduces
the measured waveform quite well, while the uniform trans-
mission line model with Zg = 60 Ω does not yield a good
agreement with the experiment after 9 ns. Note that all the
representations discussed in this paragraph constitute an engi-
neering approximation to account for the neglected attenuation
of upward-propagating waves.

Fig. 13 shows voltage waveforms at the top of the 50-Ω cable
(at the voltage source) measured by Bermudez et al. [17] and
that calculated by these researchers based on the model shown in
Fig. 11(b). In the calculations, the constant characteristic
impedance of the 95-cm conical tower was set to 240 Ω and
the lumped grounding impedance was assumed to be 60 Ω
(Bermudez et al. [17]). As seen in Fig. 13, the uniform transmis-
sion line terminated in a constant 60-Ω grounding impedance
reasonably well reproduces the voltage waveform measured at
the model tower top.

The engineering model shown in Fig. 11(b) is justified in
calculating the voltage or current at the top of the cone at the
time when the first reflection from the ground plane arrives.

Fig. 14. (a) Vertical electric and (b) azimuthal magnetic field waveforms due
to a lightning strike to a perfectly conducting cone, on a perfectly conducting
plane at horizontal distances of 50, 100, and 150 m from the base center of the
cone. The cone has a height of 160 m and a base radius of 32 m. Solid-line
curves represent FDTD calculations in which excitation is applied between the
cone apex and a second perfectly conducting plane in a configuration similar
to that shown in Fig. 4. A current pulse representative of lightning subsequent
return strokes (Nucci et al. [26]) was injected into the cone. Broken-line curves
represent calculations based on the uniform transmission line model shown
in Fig. 11(b). We set the characteristic impedance of the transmission line
representing the cone to Zcone = 140 Ω and the lumped grounding impedance
to Zg = 60 Ω, so that the current reflection coefficient at the grounding plane
was ρb = 0.4.

However, current distribution along the conical conductor, par-
ticularly near its base, may be not adequately reproduced in the
model assuming that the cone is a uniform transmission line (for
both downward- and upward-propagating waves) that is termi-
nated at its bottom end in a relatively high fictitious grounding
impedance. Note that this latter representation predicts the same
current waveform at all heights along the cone, while in reality
the upward-moving waves are expected to suffer attenuation and
dispersion [see Fig. 2(b)].

Fig. 14 shows vertical electric and azimuthal magnetic field
waveforms due to a lightning strike to a perfectly conducting
cone on a perfectly conducting ground plane at horizontal
distances of 50, 100, and 150 m from the base center of the cone.
This cone has a height of 160 m and a base radius of 32 m. The
half-cone angle of this cone is α = 11.3◦ (= tan−1(32/160)),
equal to that of the cone shown in Fig. 4, and its characteristic
impedance, according to (3), is equal to 140 Ω. Solid-line curves
represent FDTD calculations in which excitation is applied
between the cone apex and a second perfectly conducting plane
in a configuration which is a 400 : 1 (160 m : 0.4 m) version
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of that shown in Fig. 4. The use of the top conducting plane
is equivalent to the assumption that the lightning channel can
be represented by a perfectly conducting inverted cone whose
half-cone angle is equal to that of the conical strike object. Such
a configuration allows one to produce an unattenuated incident
wave. We set output waveform of the voltage source so that
a current pulse thought to be typical for lightning subsequent
return strokes (Nucci et al. [26]) is injected into the apex of
the cone. Note that fields on the bottom-conducting plane
shown in Fig. 14 are not influenced by the reflection of waves
from the top conducting plane. Broken-line curves in Fig. 14
represent calculations based on the uniform transmission line
model shown in Fig. 11(b). We set the characteristic impedance
of the 160-m high cone to Zcone = 140 Ω and the lumped
grounding impedance to Zg = 60 Ω. Thus, the current reflection
coefficient at the bottom conducting plane is ρb = 0.4. Note
that Janischewskyj et al. [5], from their analysis of five current
waveforms measured 474 m above ground on the CN tower,
inferred ρb to vary from 0.34 to 0.43, and Fuchs [27], from 13
simultaneous current measurements at the top and bottom of
the Peissenberg tower, found ρb to vary from 0.64 to 0.81.

It is clear from Fig. 14 that the azimuthal magnetic field
waveforms calculated using the uniform transmission line
model terminated in Zg = 60 Ω agree reasonably well with
those calculated using the FDTD method. Also, magnitudes
of the vertical electric field calculated using the uniform
transmission line model agree reasonably well with those
calculated using the FDTD method: The difference in peaks
at 50 m is about 20% and decreases with increasing distance.
On the other hand, at a distance of 50 m, the vertical electric
field predicted by the uniform transmission line model decays
much faster than follows from the FDTD simulation and even
exhibits a zero-crossing at 1.7 µs. For more distant observation
points (100 and 150 m), the uniform transmission line model
yields more reasonably looking electric field waveshapes. The
fast electric field decay at 50 m predicted by the uniform
transmission line model is due to the fact that attenuation of the
ground-reflected current wave (relative to the perfect-reflection
case) is lumped at the cone base, while in reality (and in the
FDTD simulation) current attenuation is distributed along the
cone. The smaller the distance to the cone, the shorter the
cone section “seen” at the observation point, and the more
pronounced the difference between lumped attenuation and
distributed attenuation of ground-reflected current waves.

VI. CONCLUSION

In this paper, we have examined small-scale experiments
conducted by Chisholm and Janischewskyj [22] and Bermudez
et al. [17] to study the interaction of lightning with towers. In
these experiments employing the TDR, the tower was repre-
sented by a conical conductor placed between two horizontal
conducting planes.

Using the FDTD simulations, we have shown that the waveg-
uiding properties of a biconical antenna depend on the direction
of propagation: A current pulse suffers no attenuation when it
propagates from the apex of the conical conductor to its base, but

Fig. 15. Side views of conical conductors used in Sections III-A and B for
the FDTD simulations presented in this paper. (a) A conical conductor of a
height of 40 cm and base radius of 8 cm, discretized using 0.5× 0.5× 1 cm3

rectangular cells. (b) A conical conductor of a height of 94.5 cm and base radius
2.5 cm, having a short bulge at a height of 60 cm, which is discretized using
0.5× 0.5× 1.5 cm3 rectangular cells. The conductors have staircase-circular
cross sections, which are not shown here.

it attenuates significantly when it propagates from the base of
the conical conductor to its apex. Thus, a conical conductor on
a conducting plane cannot be viewed as a uniform transmission
line for waves propagating upward, from the cone base to cone
apex. Further, using the image theory, we show that the current
reflection coefficient at the base of the conical conductor is close
to 1, so that the equivalent grounding impedance of the conduct-
ing plane is close to zero. Our analysis suggests that the relatively
high grounding impedance (about 60 Ω, constant or decreasing
with time) of conducting plane inferred by Chisholm and Janis-
chewskyj [22] and Bermudez et al. [17] from their small-scale
experiments is fictitious and should be viewed as an engineer-
ing approximation to account for the neglected attenuation of
upward propagating waves. When the dependence of cone’s
waveguiding properties on the direction of propagation is taken
into account, the results of the small-scale experiments simulat-
ing lightning strikes to towers can be interpreted without invok-
ing the fictitious grounding impedance of conducting plane.

Representation of a vertical strike object by a uniform trans-
mission line terminated in a fictitious grounding impedance is
justified in computing the voltage or current at the top of the
object at the time when the first reflection from the ground
plane arrives. Further, this representation is apparently justified
in computing lightning-generated magnetic fields and relatively
distant electric fields. However, it may be inadequate for calcu-
lating electric fields at distances that are considerably smaller
than the height of the object.

APPENDIX

FDTD REPRESENTATION OF TOWER MODELS

Fig. 15(a) and (b) shows the side views of conical conduc-
tors used in Sections III-A and B, respectively, discretized using
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rectangular cells for the FDTD simulations presented in this
paper. The conductors have staircase-circular cross-sections,
which are not shown here.
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