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On the Mechanism of Attenuation of Current Waves
Propagating Along a Vertical Perfectly Conducting
Wire Above Ground: Application to Lightning

Yoshihiro Baba, Member, IEEE, and Vladimir A. Rakov, Fellow, IEEE

Abstract—It is known from both theory and numerical simula-
tions that a current pulse suffers apparent attenuation as it propa-
gates along a vertical perfect conductor of uniform, nonzero thick-
ness (e.g., a cylinder) above perfectly conducting ground, excited
at its bottom by a lumped source. The associated electromagnetic
field structure is non-transverse electromagnetic (TEM), particu-
larly near the source region. On the other hand, it has been shown
analytically by Thottappillil ez al. (2001, 2004) that no attenuation
occurs and the electromagnetic field structure is pure transverse
electromagnetic (TEM) if the conductor thickness and source size
are assumed to be infinitesimal. The goal of this paper is to exam-
ine the mechanism of current attenuation as it propagates along a
nonzero thickness conductor, based on the scattering theory and
on a nonuniform transmission line approximation. In applying the
scattering theory, we decompose the “total” current in the con-
ductor into two components that we refer to as the “incident” and
“scattered” currents. The “incident” current serves as a reference
(no attenuation), specified disregarding the interaction of resultant
electric and magnetic fields with the conductor, while the “scat-
tered” current, found here using the finite-difference time-domain
(FDTD) method, can be viewed as a correction to account for that
interaction. The scattered current modifies the incident current so
that the resultant total current pulse appears attenuated. Thus,
the current attenuation is likely to be due to field scattering that
does not occur in the case of zero thickness conductor. The attenu-
ation of the total current pulse is accompanied by the lengthening
of its tail, such that the total charge transfer is independent of
height. Approximation of the vertical conductor above ground by
a nonuniform transmission line whose characteristic impedance
increases with increasing height is shown to reasonably reproduce
the current pulse attenuation predicted by the scattering theory. In
this approximation, the apparent current attenuation with height
can be attributed to waves reflected back to the source. The results
have important implications for development and interpretation of
lightning models.

Index Terms—Current attenuation, lightning, TEM, transmis-
sion line model, vertical conductor.

1. INTRODUCTION

HE METHOD of moments (MOM) (Harrington [1]) and
T the finite-difference time-domain (FDTD) method (Yee
[2]) for solving Maxwell’s equations have recently been ap-
plied to finding the distribution of current along the light-
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ning channel. Models based on this approach are referred to
as electromagnetic models (e.g., Rakov and Uman [3]). In these
models (e.g., Podgorski and Landt [4], Moini et al. [5], Kordi
et al. [6], Baba and Rakov [7]), lightning return stroke chan-
nel is represented by a vertical conductor of nonzero thickness.
It has been shown that a current pulse attenuates as it prop-
agates along such a conductor, even in the absence of ohmic
losses, when it is excited at its bottom by a lumped voltage
source (Bantin [8]; Kordi et al. [9], [10]; Baba and Ishii [11])
or by a lumped current source (Grcev et al. [12], and Baba
and Rakov [7]). For example, the current peak decreases from
11 kA to 10 kA over the bottom 300 m of a vertical perfectly
conducting wire of radius 5 cm in air above perfectly conducting
ground (Kordi et al. [10] and Greev et al. [12]), when a current
expected for lightning subsequent return strokes (Nucci et al.
[13]) is injected into the wire. The current attenuation predicted
by numerical simulations is consistent with theory (e.g., Wu
[14], Chen [15], Lee and Dudley [16]), as shown in Appendix II.

On the other hand, it has been shown analytically (Thottap-
pillil et al. [17], [18]) that no attenuation occurs and electro-
magnetic field structure is pure TEM if the conductor thickness
and source size are assumed to be infinitesimal. This case corre-
sponds to the so-called transmission line (TL) model (Uman and
McLain [19]), not to be confused with distributed-circuit (R-L-
C) models (e.g., Rakov and Uman 1998 [3]). The TL model
with return-stroke speed, v, equal to the speed of light ¢ can
be visualized, based on the transmission line theory, as a zero-
radius vertical perfectly conducting wire and its image excited
at their junction point by an infinitesimal source, as shown in
Fig. 1(a). The image can be viewed as the return path for the ver-
tical wire, and vice versa. An equivalent representation, based
on the waveguide theory, is a zero-radius vertical perfectly con-
ducting wire above perfectly conducting ground excited at its
bottom by a spherical TEM wave (Kordi et al. [10]), as shown
in Fig. 1(b). These two visualizations require a hypothetical
zero-radius vertical wire, which cannot be realized in practice
or in numerical techniques. The most general and rigorous rep-
resentation of the TL model, based on the antenna theory, is
a vertical phased current source array (Baba and Rakov [7]),
shown in Fig. 1(c). Each current source is activated when an
upward moving return stroke front reaches its altitude. This lat-
ter representation is valid for any return stroke speed v and any
channel radius.

There appears to be no consensus regarding the reason (or
reasons) for current attenuation predicted by the electromag-
netic lightning models. According to Kordi et al. [9], [10],
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Fig. 1. Visualization of the lightning return stroke TL model, I(z/,t) =
I1(0,t — 2’ /v), with v = c. Semicircular solid lines and slanted arrows rep-
resent an outward propagating spherical TEM wave front. (a) Visualization
based on the classical transmission line theory: a vertical wire and its image
excited by an infinitesimal source, valid only for v = ¢ (v < ¢ would imply
a medium other than air) and a zero radius lightning channel (L = 0o, C =0
where L and C' are the inductance and capacitance, each per unit length). A
spherical TEM field structure is required for the classical transmission line the-
ory to be applicable. (b) Visualization based on the waveguide theory: a vertical
wire above ground excited at its bottom by a spherical TEM wave, valid only for
v = ¢ (v < ¢ would imply a medium other than air) and a zero radius lightning
channel. (c) Visualization based on the antenna theory: a vertical phased current
source array above ground, valid for any lightning return stroke speed, v, and
any lightning channel radius. This is the most general and rigorous representa-
tion of the TL model. Note that for the case of v < ¢, the electromagnetic field
structure is not TEM.

the current attenuation and dispersion necessarily occur when
a vertical nonzero radius wire is excited by a non-TEM-
wave source. Baba and Rakov [7] simulated spherical TEM
wave excitation using an appropriate phased current source ar-
ray and observed current attenuation above the excitation re-
gion. In view of the absence of ohmic losses, the observed
current attenuation was attributed to “radiation losses” (e.g.,
Kordi et al. [9], [10]; Baba and Ishii [11]). Thottappillil and
Uman [20] suggested that a vertical cylinder above ground can
support an unattenuated current if this cylinder is excited at its
base by a circular ensemble of TEM wave sources. On the other
hand, Baba and Rakov [7] have pointed out that the charac-
teristic impedance of a vertical cylinder above ground varies
with height, which implies that pulses propagating along such a
cylinder in general cannot preserve their amplitude and shape.
Bermudez et al. [21] stated that the controversy regarding the
validity of uniform transmission line representation for a ver-
tical conductor above ground “is not settled yet.” One of the
reasons for the contradictory views found in the literature is
the lack of understanding of the mechanism of attenuation of
current waves propagating along a perfectly conducting wire.
In this paper, we will attempt to explain the mechanism of
the current attenuation based on the scattering theory and on
a nonuniform transmission line approximation. In applying the
scattering theory, we decompose an attenuated “total” current
pulse I, propagating on a vertical nonzero-thickness perfect
conductor into an “incident” unattenuated current pulse, I,
and an induced or “scattered” current pulse, It (evaluated
as Iiot — Iinc). This is equivalent to finding a correction to the
initially assumed reference (no attenuation) current, [, in the
conductor, this correction, Iy.,t, accounting for the interaction
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Fig. 2. Conceptual picture to explain the mechanism of current attenuation
along a vertical nonzero thickness perfect conductor above perfectly conducting
ground. All currents are assumed to flow on the axis. An attenuated “total”
current pulse [¢ot is separated into an “incident” unattenuated current pulse
Iinc and a “scattered” current pulse Iscat . Iinc generates an incident downward
vertical electric field at a horizontal distance x from the axis (on the lateral
surface of the cylinder). Iscat produces a scattered upward vertical electric field
that cancels the incident downward vertical electric field on the surface of the
cylinder, and modifies the incident current I;,.. The resultant current pulse,
Ttot = Ilinc + Iscat, appears attenuated and its tail is lengthened as this pulse
propagates along the conductor.

of resultant electric and magnetic fields with the conductor. Each
of the three currents is assumed to flow on the axis of the conduc-
tor and is represented by an appropriate vertical phased current
source array (see Fig. 2). Our goal is to examine the mechanism
of current attenuation along a nonzero-thickness vertical per-
fectly conducting wire; in other words, to show the reason why
a nonzero-thickness vertical perfectly conducting wire (as op-
posed to a zero-thickness wire) cannot support “unattenuated”
current propagation. This is why we introduce “unattenuated”
incident current [;;,. as the reference point. An incident unatten-
uated current [, transporting positive charge upward gener-
ates an incident downward vertical electric field. We will show
that the corresponding scattered current pulse /.,+ produces an
upward-directed scattered electric field that, as expected, can-
cels the incident downward vertical electric field on the surface
of the perfect conductor. This result indicates that the current
pulse attenuation occurs in order to satisfy the boundary condi-
tion on the tangential component of electric field on the surface
of a perfect conductor. Fig. 2 shows the conceptual picture of
this mechanism. Note that placing the equivalent filamentary
current on the axis and matching the field boundary conditions
on the surface is equivalent to assuming the equivalent filamen-
tary current on the surface and placing matching points on the
axis (e.g., Balanis [22]). In the nonuniform transmission line
approximation, the apparent current attenuation with height can
be attributed to waves reflected back to the source.

The structure of this paper is as follows. In Section II, us-
ing Thottappillil et al.’s [17] analytical equation, we examine
the incident vertical electric field, FE;,., which can be viewed
as generated by an incident unattenuated current pulse fj,.. In
Section III, using the FDTD method, we find the total current
Loy needed to satisfy the boundary condition on the electric
field on the surface of a vertical conductor of nonzero thickness.
We show that [ is attenuated, and that its shape changes, so
that no charge is deposited on the conductor. In Section IV,
we find the scattered current I,.,; as the difference between
the total and incident currents (Iior — finc). We examine the
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relation of I.,, which can be viewed as a correction to the ini-
tially assumed unattenuated current, [, to the attenuation of
the total current pulse and lengthening of its tail. In Section V,
we examine the dependencies of current attenuation on conduc-
tor thickness, frequency, and source length. In Section VI, we
show that a nonuniform transmission line whose characteristic
impedance increases with increasing height can reasonably re-
produce the current pulse attenuation observed using the FDTD
method in Section III. In Appendix I, we explain the reason for
less attenuation in the case of a horizontal conductor. In Ap-
pendix II, we compare total current waveforms calculated using
the FDTD method with those calculated using an analytical
equation derived by Chen [15] for an infinitely long, perfectly
conducting cylinder excited by a delta-gap step voltage source.
In Appendix III, we examine the electric field structure around a
nonzero-thickness perfect conductor. In Appendix IV, we show
the dependencies of magnitude of the longitudinal electric field,
produced by a short current dipole, on horizontal distance from
the current dipole and on pulse width, which are used in Sec-
tion V to explain the dependencies of current attenuation on
conductor thickness and on frequency.

II. INCIDENT CURRENT (/i ), INCIDENT E-FIELD (Fiy):
ANALYTICAL SOLUTION

In the TL model, the longitudinal current I (z’,t) in a straight
and vertical lightning channel at an arbitrary height 2’ and time
t is expressed as follows:

I(2',t) =1(0,t — 2 /v) (1)

where v is the return-stroke speed and I (0, t) is the channel-base
current. Typical values of v are one-third to two-thirds of ¢ (e.g.,
Rakov [23]). In this paper, we will assume that v = ¢, as done
by Thottappillil ez al. [17], Kordi et al. [9], [10]; and Baba and
Rakov [7], in order to simplify the analysis aimed at identifying
the mechanism of current attenuation with height.

Baba and Rakov [7] showed numerically that a vertical phased
current source array activated so as to satisfy (1) with v = ¢ pro-
duced a spherical TEM wave [see Fig. 1(c)]. The corresponding
analytical solution is found by Thottappillil et al. [17], with the
electric field equation being given by

Ey(r,0,t) = 1(0,t —r/c),
where 7 is the inclined distance from the channel origin to an
observation point, and @ is the angle between the channel and
a straight line passing through both the channel origin and the
observation point. Note that (2) accounts for the electrostatic, in-
duction, and radiation field components (Thottappillil et al. [17],
Fig. 2). The r~! dependence of the total electric field is due to
the assumption v = ¢ (return stroke front moves at the same
speed as electromagnetic signal). We will use a vertical, zero-
thickness phased current source array to generate an incident
spherical TEM wave. We will refer to the source current distri-
bution [given by (1)] as the “incident” unattenuated current /..
This current is shown in Fig. 3. Although other [;,,. are possi-
ble for the same I, our choice is the best for examining the
mechanism of current attenuation with height. Then, in Section
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Fig. 3. Incident current, [j,,., waveforms at different heights produced by a

vertical phased current source array, each source generating a pulse having a
magnitude of 1 kA and a half peak width of 67 ns.
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Fig. 4. Phased current source array of zero thickness above perfectly conduct-
ing ground, activated as specified by (1) withv = c. E, (z, z, t) represents the
incident vertical electric field Ej,c.

TABLE 1
MAGNITUDES OF DOWNWARD VERTICAL ELECTRIC FIELD, Fjy,¢, IN kV/m AT A
RADIAL DISTANCE x (x = 0 MAY BE VIEWED AS © — () FROM THE AXIS OF A
VERTICAL PHASED CURRENT SOURCE ARRAY AND AT A HEIGHT z ABOVE THE
GROUND PLANE, CALCULATED USING (3). CURRENT MAGNITUDE IS SET AT
1 kA. DOWNWARD FIELD IS DEFINED AS POSITIVE

z, m
x, m 0 0.1 1 10 100
0 © 600 60 6.0 0.60
0.1 600 420 60 6.0 0.60
1.0 60 60 42 6.0 0.60

III, we will consider a vertical nonzero-thickness conductor and
find the distribution of current ;.. along this conductor needed
to satisfy the boundary condition on the electric field on its sur-
face, using the FDTD method. The difference between [ and
I;nc can be viewed as the scattered current Igcqt = Liot — Line.

The vertical electric field component E, at a horizontal dis-
tance = from the axis and at a height z above ground plane is
given by

E.(x,2,t) = Ey(r,0,t) cos (g - 9)

1
2meger

1
= — ——T1(0,t — V22 +22/c) (3)
2megeV a2 + 22 ( /)
and illustrated in Fig. 4.
Table I shows magnitudes of downward vertical electric field
calculated using (3) along and around the vertical zero-thickness
phased current source array, which represents an incident

I1(0,t —r/c)
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Fig. 5. A vertical perfectly conducting parallelepiped having a cross sectional
area of 2 x 2m? in air on a perfectly conducting plane excited at the bottom by a
1-m high current source. Current, I+, in this conductor corresponding to zero
vertical electric field (Eot = 0) on the surface of conductor is found using
the FDTD method. The working volume of 40 x 40 x 310 m? is surrounded by
perfectly matched layers (PML) of thickness 10 m, except for the bottom, where
the volume is limited by the perfectly conducting plane.

unattenuated positive current pulse [, having a magnitude of
1 kA and propagating upward with v = c. Interestingly, the tan-
gential (vertical) component of electric field at z = 0 is nonzero
(approaches a nonzero value as x approaches zero, x — 0), im-
plying that the phased current source array cannot be viewed as
a vertical perfectly conducting cylinder of zero radius. In this
case, the TEM field structure is maintained due to the fact that,
although the vertical component of electric field at x = 0 m is
nonzero, its radial component (the same as the theta component
at x = 0 m) is infinitely large. The downward vertical electric
field along a zero-thickness array (x = 0 m, z # 0) varies as
inverse height (1/z). Away from the array (« > 0 m), the verti-
cal electric field decreases with increasing height more slowly
than the inverse proportionality at relatively small heights (near
the source region), and decreases approximately as the inverse
height beyond that region.

Note that for two parallel vertical phased current source ar-
rays, the vertical electric field decays with height much faster
than inverse height in the case of a single vertical phased current
source array and vanishes within distances exceeding several
times the spacing between the two parallel current source arrays
(Appendix I-A). This observation has implications for the case
of horizontal wires above ground, considered in Appendix I-B.

II. TOTAL CURRENT (i), TOTAL E-FIELD (E}ot):
NUMERICAL SOLUTION

In order to simulate a spherical TEM wave modified by the
presence of nonzero-thickness conductor and find associated
current, Iy, in the conductor (see Fig. 2), we consider a verti-
cal perfectly conducting parallelepiped having a cross sectional
area of 2 x 2 m? in air on a perfectly conducting plane, excited
at its bottom by a 1 m high current source (Fig. 5). The solution
will be found using the FDTD method designed for rectangular
geometry. Conclusions based on this solution are also applicable

Her ()= He ()= Ha ()= 10, 1)/ (12AX)
Hya (8)= His ()= Hye ()= - 1(0, ) / (12AX)
Hyr (9= Hia (0= Hye (0= -1(0, 1) (124 )
Hys (8)= Hys ()= Hys (f)= (0, £) / (12AY)

-"J/ Hy4 Hy5 Hy6 AX=4Y
Perfectly conducting plane =4Z=1 m

Fig. 6. Specification of 1 m high current source at the bottom of the 2 x 2 x
300 m? vertical parallelepiped shown in Fig. 5.
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Fig. 7. Total current waveforms, Iio¢, at different heights calculated using the
FDTD method for a vertical perfectly conducting parallelepiped having a cross
sectional area of 2 x 2 m? in air on a perfectly conducting plane excited at its
bottom by a 1 m high lumped current source. This current source produces a
Gaussian pulse having a magnitude of 1 kA and a half peak width of 67 ns.

to the cylindrical geometry discussed above. The total current
I, minus the incident current [, will yield the scattered cur-
rent Ii,¢. As noted above, this procedure can be viewed as
finding a correction, Is..t, to the initially assumed unattenuated
current, I;,., needed to account for the reaction of the conductor.
Alternatively, I, could be obtained setting Fgcqt = — Ejpe On
the surface of the conductor and solving for I, on its axis.

The working volume of 40 x 40 x 310 m?, shown in Fig.5,is
divided into 1 x 1 x 1 m? cubic cells. Perfectly matched layers
(PML) (Berenger 1994 [24]) (absorbing boundaries) are set at
the top and sides of the volume in order to avoid reflections there.
At the bottom, the volume is limited by a perfectly conducting
plane that is simulated by forcing the tangential components of
electric field at the boundary to be zero. This latter method is also
used to simulate vertical perfectly conducting parallelepiped.

The current source is represented, as illustrated in
Fig. 6, by specifying 12 1-m-long magnetic-field elements,
H,1(t),Hy1(t), and so on (that is, 3 x 3 m? magnetic-field
loop), surrounding the bottom 2 x 2 x 1 m? section of the
vertical parallelepiped.

Fig. 7 shows current waveforms at different heights calcu-
lated using the FDTD method with a time increment of 1.25
ns for the vertical perfectly conducting parallelepiped shown in
Fig. 5. The current source produces a Gaussian pulse having a
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Fig. 8. Time integrals of current at heights 0, 10, and 50 m calculated using the
FDTD method for a 1200 m long vertical perfectly conducting parallelepiped
having a cross sectional area of 2 x 2 m? in air on a perfectly conducting plane
excited at its bottom by a 1 m high lumped current source, which produces a
Gaussian pulse having a magnitude of 1 kA and a half peak width of 67 ns.

magnitude of 1 kA and a half-peak width of 67 ns. The current
pulse propagates upward with attenuation, which is most signif-
icant within the bottom 20 m, while the risetime of the current
pulse is almost constant. Within the bottom 20 m, the average
propagation speed is 0.9¢, evaluated tracking the pulse peak, or
0.95¢, evaluated tracking the pulse rising edge that is defined as
1% level of the corresponding peak on the rising edge, and is
essentially equal to c at larger heights.

As seen in Fig. 7, the current pulse attenuation is accompa-
nied by the lengthening of its tail. Fig. 8 shows the time integral
of current at heights 0, 10, and 50 m calculated using the FDTD
method for a 1200-m long vertical perfectly conducting par-
allelepiped having a cross-sectional area of 2 x 2 m? excited
at its bottom by a 1-m high lumped current source. It is clear
from Fig. 8 that, as time approaches infinity, the charge trans-
ferred through each section of the conductor tends to be equal
to the charge supplied by the source. In other words, as time
approaches infinity, charge on the conductor approaches zero.
This result possibly suggests that no energy is lost from the sys-
tem (composed of an infinitely long vertical conductor above an
infinitely large ground plane). If so, then, the apparent current
attenuation, often viewed as being due to “radiation losses,” can
be attributed to the redistribution of energy between electric and
magnetic fields that is needed to satisfy the boundary conditions
on the surface of perfect conductor. An apparently equivalent in-
terpretation in terms of the nonuniform transmission-line theory
is presented in Section VI.

IV. SCATTERED CURRENT ([4cat ), SCATTERED E-FIELD
(E scat ) —-E inc

In this Section, we find the scattered current as Ig.,; =
Loy — Iine, which is responsible for the apparent attenuation
of the total current Iy, with height. The total current wave-
forms I, at different heights, calculated using the FDTD
method for a vertical perfectly conducting parallelepiped hav-
ing a cross sectional area of 2 x 2 m? in air, are shown in
Fig. 7. The corresponding incident current waveforms Iy,
given by (1) for v = ¢, are shown in Fig. 3. Fig. 9 shows wave-

: Iscat = Itot - ]inm Escat =

525

Current [ kA ]

400 600
Time [ns]
Fig.9. Scattered current waveforms, Iscat, at different heights obtained as the

difference between corresponding waveforms shown in Figs. 7 and 3 (Iscat =
1 tot — 1 inc)-

Electric field [ kV/m ]

600
Time [ns]

400

Fig. 10. Waveforms of vertical electric field at a horizontal distance x = 1 m
from the conductor axis and at heights z = 10, 20, and 50 m calculated using
appropriate phased current source arrays. Downward electric field is defined
as positive. The positive unipolar waveforms are calculated using [j. shown
in Fig. 3 (these waveforms can also be obtained using (3)), and the negative
unipolar waveforms are calculated using /scat shown in Fig. 9. Each source of
the phased current source array is represented by a 1 x 1 m? magnetic field loop
surrounding the conductor axis.

forms of Isc.t = ot — Iinc (the difference between the wave-
forms shown in Figs. 7 and 3). The scattered current I;.,; has
a bipolar waveshape with the initial half cycle having a polarity
that is opposite to that of the incident current I;,,.. Thus, I,y iS
responsible for the apparent attenuation of I, with height. The
second half cycle of I, has the same polarity as [, and causes
the lengthening of the total current pulse tail. Since I deposits
no charge on the vertical perfect conductor (see Fig. 8), the time
integral of 5., is equal to zero (as time approaches infinity).
Fig. 10 shows waveforms of the vertical electric field at a hor-
izontal distance x = 1 m from the conductor axis and at heights
z = 10, 20, and 50 m in air due to I, (Fig. 3) and 5., (Fig. 9).
The scattered electric fields ..t (negative unipolar waveforms
in Fig. 10) were calculated using the scattered current distri-
bution I, (Fig. 9) as the outputs of a vertical phased current
source arrays (see Fig. 2). The incident electric fields Ej;. (pos-
itive unipolar waveforms in Fig. 10) were calculated similarly
using the incident current distribution I, (Fig. 3) as the outputs
of a vertical phased current source arrays (or, equivalently, using
(3)). Each current source was represented by specifying four
I-m long magnetic-field elements (1 x 1 m? magnetic-field
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Fig. 11. Current waveforms at different heights calculated using the FDTD
method for a vertical perfectly conducting parallelepiped having a cross sec-
tional area of 2 x 2 m? in air on a perfectly conducting plane excited at its
bottom by a 1 m high lumped current source. This current source produces a
current pulse representative of lightning subsequent return strokes. See Nucci
etal. [13].

loop) surrounding the conductor axis, as described above. The
scattered current Iy .y, Which is responsible for the reduction
of I, pulse magnitude, produces a scattered upward vertical
electric field that, as expected, cancels the incident downward
vertical electric field 1 m away from the conductor axis. Thus
the current attenuation is likely to be due to field scattering that
does not occur in the case of zero-thickness conductor. As noted
above, I, is also responsible for the lengthened wavetail of
the total current Iiot = Iine + Iscat. It follows from Table I and
(3) that a current pulse attenuates significantly near the source
region, and that attenuation reduces with increasing height.

Both incident and scattered fields contribute to the overall
electromagnetic field structure. Near the vertical conductor, the
vertical electric field due to I ., decays with increasing hori-
zontal distance x considerably faster than that due to ;.. As
a result, the TEM field structure due to I;,. is disturbed in the
vicinity of the conductor. At larger distances, the fields due to
Ly and Iy, decay at about the same rate, so that the overall
electromagnetic field structure becomes more or less TEM (see
Appendix III).

Note that the same solution for I.,; would be obtained if we
placed a large number of phased current source arrays, whose
total current equals to Ij;, on the lateral surface of the cylinder
and required a zero total vertical electric field on the axis of
the cylinder. This formulation is apparently equivalent to the
vertical cylinder excited at its base by a circular ensemble of
TEM wave sources considered by Thottappillil and Uman [20].

V. DEPENDENCES OF CURRENT ATTENUATION ON THE SOURCE
LENGTH, CONDUCTOR THICKNESS, AND FREQUENCY

Besides the base case, 1-m high current source, 2 x 2 m?2
cross-sectional area parallelepiped, 67 ns half-peak width Gaus-
sian pulse, presented in Section III, we performed calculations
also for the following conditions: 1) a 2-m high current source;
2) a vertical perfectly conducting parallelepiped having a 1 x
1 m? cross sectional area; and 3) a 33 ns half-peak width
Gaussian pulse. Table II shows the dependency of current atten-
uation on the source height, Table III on the thickness of vertical

TABLE 11
MAGNITUDES OF CURRENT PULSES, Iot, AT DIFFERENT HEIGHTS (IN PERCENT
OF THE MAGNITUDE AT 2’ = 0) CALCULATED USING THE FDTD METHOD FOR
A VERTICAL PERFECTLY CONDUCTING PARALLELEPIPED HAVING A CROSS
SECTIONAL AREA OF 2 X 2 m?2. THE VERTICAL CONDUCTOR IS EXCITED AT ITS
BoOTTOM BY A 1 OR 2 m HIGH LUMPED CURRENT SOURCE, WHICH PRODUCES
A GAUSSIAN PULSE HAVING A HALF-PEAK WIDTH OF 67 ns

Source height, z’, m

m 0 10 20 50 100

1 100 74 68 61 56

2 100 79 72 64 59
TABLE III

MAGNITUDES OF CURRENT PULSES, Iot, AT DIFFERENT HEIGHTS (IN PERCENT
OF THE MAGNITUDE AT 2’ = 0) CALCULATED USING THE FDTD METHOD FOR
VERTICAL PERFECTLY CONDUCTING PARALLELEPIPEDS HAVING CROSS
SECTIONAL AREAS OF 2 X 2 m? AND 1 X 1 m? ON A PERFECTLY CONDUCTING
PLANE. THE VERTICAL CONDUCTOR IS EXCITED AT ITS BOTTOM BY A 1 m
HiGH LUMPED CURRENT SOURCE, WHICH PRODUCES A GAUSSIAN PULSE
HAVING A HALE-PEAK WIDTH OF 67 ns

>

z,m
area 0 10 20 50 100
100 79 73 66 61
100 74 68 61 56

Cross-sectional

1x1m’

2x2m’

TABLE IV
MAGNITUDES OF CURRENT PULSES, Iot, AT DIFFERENT HEIGHTS (IN PERCENT
OF THE MAGNITUDE AT 2z’ = 0) CALCULATED USING THE FDTD METHOD FOR
A VERTICAL PERFECTLY CONDUCTING PARALLELEPIPED HAVING A CROSS
SECTIONAL AREAS OF 2 x 2 m?. THE VERTICAL CONDUCTOR IS EXCITED AT
ITs BOTTOM BY A 1 m HIGH LUMPED CURRENT SOURCE, WHICH PRODUCES A
GAUSSIAN PULSE HAVING A HALF PEAK WIDTH OF 33 OR 67 ns

Half-peak z’, m
width, ns 0 10 20 50 100
33 ns 100 66 59 52 47

67 ns 100 74 68 61 56

conductor, and Table IV on the pulse width or the frequency
content of excitation. It is clear from Tables II to IV that the cur-
rent attenuation becomes more pronounced as the source height
decreases, the thickness of vertical conductor increases, and the
pulse width decreases (higher frequency content increases).

As seen in Fig. 7, current attenuation is most pronounced in
the bottom part of vertical conductor (near ground). Since there
is an imposed current distribution (no field boundary condition
to satisfy) over the source height, there is less pronounced
attenuation in the case of a longer source at the bottom of the
conductor.

As seen in Table I, the magnitude of incident downward
vertical electric field generated by I, depends weakly on the
horizontal distance from the conductor axis when the horizontal
distance is much smaller than the height above ground. On the
other hand, the magnitude of an upward vertical electric field
produced by a single-cycle bipolar current pulse, which roughly
represents I, and has a negative initial half cycle, along
a short dipole, decreases rapidly as the horizontal distance
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increases (see Appendix V). Therefore, a larger I, is needed
to compensate the incident downward vertical electric field
on the conductor surface as the conductor radius becomes
larger. This is the reason why current pulse attenuation is more
pronounced for a larger thickness conductor.

It is clear from (3) that the magnitude of the downward ver-
tical electric field produced by Iiy,. along a vertical conductor
is independent of frequency if v = ¢ (Thottappillil et al. [17]).
On the other hand, the magnitude of the vertical electric field
produced by a short current dipole becomes smaller as the fre-
quency gets higher (see Appendix I'V). Within a few meters from
the short dipole, the static component of electric field, which is
related to the time integral of current, is dominant. Therefore, the
electric field produced by the dipole at such horizontal distances
(representing the thickness of the conductor) becomes smaller
as the pulse width gets smaller (its higher frequency content
increases) if the magnitude remains the same. As a result, in
order to compensate the incident electric field on the conductor
surface, the magnitude of 4.,y needs to be larger as the pulse
width gets smaller (higher frequency content gets larger). This
is the reason why a more narrow current pulse exhibits a more
pronounced attenuation.

The risetime of the Gaussian current pulse in Fig. 7 becomes
only about 10% longer within the bottom 20 m or so than that of
the injected waveform and remains essentially the same beyond
that region. On the other hand, if we inject a current pulse
representative of lightning subsequent return strokes (Nucci
et al. [13]), which is characterized by a broader frequency spec-
trum than the 67-ns wide Gaussian pulse, into the vertical per-
fectly conducting parallelepiped shown in Fig. 5, the pulse rise-
time becomes appreciably longer as the current pulse propagates
upward (see Fig. 11). This is because higher frequency compo-
nents are subject to considerably stronger attenuation than lower
frequency components.

VI. NONUNIFORM TRANSMISSION-LINE APPROXIMATION

Now we will consider a nonuniform transmission line ap-
proximation (e.g., Wagner and Hileman [25]; Menemenlis and
Chun [26]) and show that it is consistent with our scattering
theory analysis given in Sections II-IV. In this approximation,
the apparent attenuation of current with height can be attributed
to waves reflected back to the source. The effect is more pro-
nounced near the bottom of the vertical conductor.

Fig. 12 shows a lossless nonuniform transmission line ex-
cited by a current source of zero length. Although Haase and
Nitsch [27], [28] and Haase et al. [29] have recently derived
telegrapher’s equations for nonuniform transmission lines in the
frequency domain, we will use a simplified approach assuming
that the vertical perfectly conducting wire above ground can
be represented by a lossless transmission line whose character-
istic impedance increases with height as 60 cosh ™! (2//r) (e.g.,
Cheng [30]). This expression gives the characteristic impedance
in ohm of a horizontal perfectly conducting wire of radius r
(not to be confused with the radial distance in (2) and (3) and
in Fig. 4) at a height 2z’ above perfectly conducting ground.
However, such an approach is often used in lightning mod-

ﬁ higher

Z:=60cosh™(z'/r)

B r=1m
lower
(K

Fig. 12. A lossless nonuniform transmission line, representing a vertical con-
ductor above ground or, equivalently, a vertical conductor and its image, excited
by a current source. The characteristic impedance Z. is assumed to vary with
height 2’ as 60 cosh™* (2//r). The radius of the vertical conductor r is set to 1
m. The current source produces a Gaussian pulse having a magnitude of 1 kA
and a half-peak width of 67 ns.

Lossless nonuniform
transmission line

d

Current source

1.2 : :
10 b LOSSIESS NON-UNIfOrM |
~10m ; : itransmissiaon line
= 0.8 bt o LR
g iZc = 60cosh™(z'/r)
Tt 06 :
L
8 0.4 |eferfteesd .....................
02 b AN A\ S R—
0.0 : : —
0 200 400 600 800
Time [ ns]
Fig. 13. Current waveforms at different heights calculated for the nonuniform

transmission line shown in Fig. 12, to be compared with Fig. 7. Values of Z. at
10, 30, 50, and 100 m are 180, 246, 276, and 318 2, respectively. The half peak
width of a Gaussian pulse injected at the botom is 67 ns.

eling (e.g., Bazelyan et al. 1978 [31]), since there is no exact
equation for the characteristic impedance for a vertical nonzero-
radius conductor above ground. In this analysis, the nonuniform
transmission line shown in Fig. 12 is divided into 3 m uni-
form transmission line segments whose constant characteristic
impedances are given by 60 cosh™!(2//r). The current source
was assumed to produce a Gaussian pulse having a magnitude
of 1 kA and a half-peak width of 67 ns (the same as in Sections
II-IV). The travel time of current waves along a 3-m long seg-
ment is 10 ns. A traveling wave analysis method, the so-called
Bergeron method (Dommel [32]), solving standard telegrapher’s
equations, was used to compute currents along such a dis-
cretized nonuniform transmission line. The results are shown in
Fig.13. The treatment of reflections in the Bergeron method
is qualitatively illustrated in Fig. 14. Note that the cosh™!
expression for the characteristic impedance reduces to
601n(22'/r) when 2> r (cosh™ 'z =Infz + (22 —1)V/2]
for > 1), which yields almost the same current profile as
that shown in Fig. 13.

From comparison of Figs. 7 and 13, one can see that the
lossless nonuniform transmission line shown in Fig. 12 can
reasonably reproduce the current pulse attenuation and the
lengthened wavetail, obtained from the full-wave analysis us-
ing the FDTD method for the 2 x2 m? vertical perfectly
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High characteristic
impedance

#2': transmitted ]
wave K
#2: reflected wave k A

from junction A

#1: incident a
wave \ Low characteristic

w impedance

#3: reflected 1 L Current source
wave from source A" (infinitely large impedance)

Fig. 14. A transmission line composed of two lossless uniform transmission
line sections connected in series, excited by a current source. The characteristic
impedance of the section above junction point A is higher than that of the
section below A. When an incident upward propagating positive current wave
(#1) encounters junction A, a downward negative (reflected) current wave (#2)
is produced there. When the downward negative reflected current wave (#2)
encounters the current source (infinitely large impedance), an upward positive
(reflected) current wave (#3) is produced.

conducting parallelepiped above ground (see Section III). The
observed small differences in current decay seen in Figs. 7 and
13 are likely to be due to different cross sections used in the
FDTD (2 x 2 m?) and nonuniform transmission line (1 m ra-
dius circle) simulations. In the case of a shorter injected current
pulse (half-peak width of 33 ns), the waveforms of a current
pulse at different heights calculated using the nonuniform trans-
mission line shown in Fig. 12 are in good agreement with those
calculated using the FDTD method for the vertical perfectly
conducting parallelepiped (neither of these waveforms is shown
in this paper).

We now qualitatively discuss the current pulse attenuation
and lengthening of its tail, predicted by the nonuniform trans-
mission line approach. Fig. 14 shows the bottom two sections of
discretized nonuniform transmission line presented in Fig. 12.
When an incident upward propagating positive current wave
(#1) encounters junction A, a downward negative (reflected)
current wave (#2) is produced there. The reflected current wave
is negative because the characteristic impedance above A is
greater than below A. The apparent current attenuation with
height along the nonuniform transmission line (Fig. 13) can be
attributed to such waves reflected back to the current source.
When the downward negative reflected current wave (#2) en-
counters the current source (infinitely large impedance), an up-
ward positive (reflected) current wave (#3) is produced. This
latter reflection is apparently responsible for the lengthened tail
of the total current waveform (Fig. 13).

The time variations of the time integral of current pulse at
each height for this nonuniform transmission line, which are
not shown in this paper, are essentially identical to those cal-
culated using the FDTD method for the vertical perfectly con-
ducting parallelepiped (Fig. 8). Note that an attenuated current
propagating along a vertical conductor above ground produces a
non-TEM wave (Baba and Rakov [7]). Therefore, a similarly at-
tenuated current pulse, which propagates along the nonuniform
transmission line, also produces a non-TEM wave.

Since the Bergeron method employs standard telegrapher’s
equations for each segment of the wire, it apparently does not
account for electromagnetic radiation. This fact and the simi-

larity of the results obtained using the nonuniform transmission
line approximation and scattering theory appear to support our
speculation (see Section III) that the current attenuation can be
explained without invoking the not-well-defined concept of "ra-
diation losses." As noted above, in the nonuniform transmission
line approximation, the apparent current attenuation with height
can be attributed to waves reflected back to the source.

VII. SUMMARY
A. Attenuation Mechanism in Terms of the Scattering Theory

The mechanism of apparent attenuation of current pulses as
they propagate along a vertical nonzero-thickness perfect con-
ductor above perfectly conducting ground can be visualized as
follows. A reference (no interaction with the conductor, no at-
tenuation) positive current pulse [;,,. propagating upward gen-
erates an incident spherical TEM wave, with vertical electric
field on the surface of the conductor being directed downward.
Cancellation of this field, as required by the boundary condition
on the tangential electric field on the surface of a perfect con-
ductor, gives rise to a “scattered” current Iy.,¢. This scattered
current I,.,; modifies I;,., so that the resultant total current
pulse ;¢ appears attenuated as it propagates along the vertical
conductor. Thus it appears that the field scattering (not present
in the case of zero-thickness conductor) causes current attenu-
ation with height. The attenuation of the total current pulse is
accompanied by the lengthening of its tail, such that the total
charge transfer is independent of height. The electromagnetic
field structure associated with an attenuated current distribution
along a vertical conductor above ground is non-TEM.

B. Attenuation Mechanism in Terms of the Nonuniform
Transmission Line Theory

A nonuniform transmission line whose characteristic
impedance increases with increasing height is shown to reason-
ably reproduce the current pulse attenuation and lengthening of
its tail predicted by the scattering theory. In this representation,
the apparent current attenuation with height can be attributed to
waves reflected back to the source.

C. Dependence on Height

The magnitude of the incident downward vertical electric
field on the conductor surface produced by I, is approximately
inversely proportional to height if the height is much larger than
the conductor thickness. This is the reason for less pronounced
current attenuation with increasing height.

D. Dependence on Pulse Width

The magnitude of the incident vertical electric field on the
surface of a perfect conductor, produced by Ij;,, is independent
of frequency if v = c. On the other hand, the magnitude of the
scattered vertical electric field is related to the time integral of
Iscat- Therefore, if the pulse width of incident vertical electric
field on the conductor surface, to be cancelled by the scattered
vertical electric field, gets narrower while its magnitude is the
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1(0,t-z’/c)

- 1(0,t-z'/c)

2 JK

z Exz,)

Perfectly conducting ground

Fig. 15. Two parallel vertical phased current source arrays of zero thickness
above perfectly conducting ground. The arrays simulate incident unattenuated
opposite polarity current pulses having an amplitude of 1 kA propagating upward
with v = c. The spacing between the arrays is d = 1 m.

same, a larger Iy.o¢ is needed. This is the reason why more
narrow current pulses exhibit a stronger attenuation.

E. Implications for Lightning Models

Our finding that a current pulse propagating along a verti-
cal nonzero-thickness conductor attenuates significantly near
the ground has important implications for lightning modeling,
since this is the region of primary interest when the generation of
lightning fields at early times is considered. Lightning return-
stroke models with an imposed current distribution along the
entire channel represent a useful engineering tool, but should be
used with caution in studying lightning physical processes. A
vertical conductor above ground, representing a lightning chan-
nel or a tall strike object, generally cannot support unattenuated
propagation of current waves, even if all losses are neglected.

APPENDIX I

A. Incident E-Field for Two Parallel Vertical Phased Current
Source Arrays: Analytical Solution

Fig. 15 shows two parallel vertical phased current source
arrays of zero thickness on perfectly conducting ground. The
arrays represent incident unattenuated opposite polarity current
pulses having the same amplitude and propagating upward with
v =c.

Table V shows magnitudes of downward vertical electric field
along the axis of the left array, calculated using (3). Note that
retardation of wave propagation from the right array is neglected
in this calculation. In Table V, magnitudes of downward vertical
electric field in the case of a single array are also shown for
reference. It follows from Table V that the vertical electric field
(to be compensated by the scattered field) decreases much faster
in the case of two arrays than in the case of a single array and
vanishes within heights exceeding several times the spacing
between the two arrays. This result indicates that a current pulse
on a horizontal conductor above perfectly conducting ground
would attenuate less than that on a single vertical conductor
above ground.

529

TABLE V
MAGNITUDES OF DOWNWARD VERTICAL ELECTRIC FIELD IN kV/m AT A
HEIGHT z ALONG THE AXIS (z = 0 OR & — 0) OF THE LEFT PHASED CURRENT
SOURCE ARRAY ABOVE GROUND PLANE SHOWN IN FIG. 15, CALCULATED
USING (3). RETARDATION OF WAVE PROPAGATION FROM THE RIGHT PHASED
CURRENT SOURCE ARRAY IS NEGLECTED. MAGNITUDES OF DOWNWARD
VERTICAL ELECTRIC FIELD IN THE CASE OF A SINGLE PHASED SOURCE ARRAY
ARE ADDED FOR REFERENCE. DOWNWARD FIELD IS DEFINED AS POSITIVE

Configuration z, m

0.1 1 10 100
Two parallel vertical arrays | 540 18 0.03 0.00
Single vertical array 600 60 6.0 0.60

300 m _ E-fields due to incident currents

300 m

\1 m x 1 m horizontal conductor

1-m long horizontal current source

Perfectly conducting ground

(a)
300 m_ E-fields due to incident currents
[e— ¥ — 300 m

1 m x 1 m horizontal conductor

ST——— 5-clement vertical in-phase
current source array

Perfectly conducting ground
(b)

Fig. 16. A horizontal conductor having a cross sectional area of 1 x 1 m?
placed 5.5 m above perfectly conducting ground, to be analyzed using the
FDTD method: (a) A 1 m long current source is inserted in the middle of 600
m long horizontal wire. (b) A 5 m vertical in-phase current source array is
connected to the middle of a 600 m long horizontal wire. Each current source
produces a Gaussian pulse having a magnitude of 1 kA and a half-peak width
of 67 ns. The white arrows indicate the directions of longitudinal electric fields
generated by incident unattenuated current pulses.

B. Total Current for Horizontal Configurations:
Numerical Solution

Fig. 16 shows a horizontal perfectly conducting paral-
lelepiped having a cross sectional area of 1x 1 m? placed
5.5 m above perfectly conducting ground, to be analyzed us-
ing the FDTD method. The working volume for this analysis
is 40 x 620 x 40 m? and is surrounded by perfectly matched
layers (PML) of thickness 10 m, except for the bottom,
where the volume is limited by the perfectly conducting
plane. The overall rectangular volume shown in Fig. 16
is divided into 1x1x1 m® cubic cells. The white ar-
rows in Fig. 16 indicate the directions of the longitudinal
electric fields generated by the incident unattenuated current
pulses on horizontal wires.

In Fig. 16(a), which is quite similar to the configuration of
Fig. 15, both right-directed positive and left-directed negative
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Fig. 17. Current waveforms at different distances from the current injection
point calculated using the FDTD method for a horizontal conductor placed
5.5 m above perfectly conducting ground: (a) For the configuration of Fig. 16(a).
(b) For that of Fig. 16(b).

(incident unattenuated) current pulses will produce left-directed
incident electric fields. In Fig. 16(b), the longitudinal incident
electric field near the current injection point would be much
less than that in Fig. 16(a). Indeed, the incident right- and left-
directed positive current pulses will produce left- and right-
directed incident electric fields, respectively, which will tend to
cancel each other.

Fig. 17 shows current waveforms at different distances from
the current injection point calculated using the FDTD method
for each of the two cases presented in Fig. 16. The FDTD
simulation results are consistent with what we expected from
the examination of longitudinal incident electric fields generated
by the incident current pulses. This indicates that longitudinal
electric fields generated by the incident current pulses are closely
related to current attenuation. Note that, even in Fig. 17(a), a
current pulse decays only within the first 20 m or so, and it
propagates with little or no attenuation beyond this region, where
the incident longitudinal electric field essentially vanishes. This
is generally referred to as a “quasi-TEM” field structure.

APPENDIX II

COMPARISON OF FDTD SIMULATION WITH AN ANALYTICAL
SOLUTION

Chen [15] has derived an approximate analytical equation for
the transient current I (2’,t) along an infinitely long, perfectly

10 - r :
1-MV; ramp-front:voltage excitation
Y O S (risétime =100ins) . . ...
Z'=0m’; :
i FDTD
g 6 b A 10m .............................................. Theory(EqB1) .....
*s' i 50m 100 m : : :
E 4+ Y A it BRI {
=
O
2 ....................................................
0 i i i i
0 200 400 600 800
Time [ns]
Fig. 18. Current waveforms at different heights, calculated using the FDTD

method for a vertical perfectly conducting parallelepiped having a cross sec-
tional area of 2 x 2 m? above a perfectly conducting plane excited at its bottom
by a 1 m high lumped voltage source and those calculated using (II1) for a ver-
tical perfectly conducting cylinder of 1 m radius above a perfectly conducting
plane excited at its bottom by a delta-gap voltage source. In both cases, the
voltage sources produce a ramp front wave having a magnitude of 1 MV and a
risetime of 100 ns.
conducting cylinder in air, excited in the middle by a delta gap
step voltage, V, source. This equation is reproduced below.
1(2,) = Y tan~ ( T >
Mo 2In(ve2t? — 22 Ja)
where 7 is the free space impedance (1207), In is the natural
logarithm, and a is the radius of the cylinder. Chen’s [15]
approximate expression yields quite accurate results that are
almost identical to those given by the exact formula (Wu [14]).
If we apply (II1) to a vertical cylinder placed on a perfectly
conducting plane and excited at its bottom, we have only to
multiply the magnitude of resultant current by 2, in order to
account for the image source.

Fig. 18 shows current waveforms at different heights, 2/, cal-
culated using the FDTD method for a vertical perfectly con-
ducting parallelepiped having a cross-sectional area of 2 x 2 m?
on a perfectly conducting plane excited at its bottom by a 1 m
high lumped voltage source and those calculated using (II1) for
a vertical perfectly conducting cylinder of 1 m radius excited at
its bottom by a delta-gap voltage source. In both cases the volt-
age sources are assumed to produce a ramp-front wave having
amagnitude of 1 MV and a risetime of 100 ns. Since (II1) is the
solution for a step voltage excitation, we obtained the response
to our ramp-front voltage wave using numerical convolution.
The waveforms calculated using the FDTD method agree rea-
sonably well with those calculated using (II1). Note that the
small difference in current waveforms at 2’ = 0 m is probably
due to the difference in source size: 1 m in the FDTD simulation
versus zero in (IT1). It is also worth noting that as the radius,
a, of the cylinder approaches zero, current predicted by (II1)
approaches zero as well, unless voltage, V, is infinitely large.

(111)

APPENDIX III

E-FIELD STRUCTURE AROUND A VERTICAL
NONZERO-THICKNESS PERFECT CONDUCTOR

‘We now examine the electromagnetic field structure in air sur-
rounding the 2 x 2 x 300 m?3 or 1 x 1 x 300 m? vertical perfect
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TABLE VI

MAGNITUDES OF ELECTRIC FIELD (IN PERCENT OF THE MAGNITUDE OF THE

CORRESPONDING ELECTRIC FIELD OF SPHERICAL TEM WAVE) AT DIFFERENT
POINTS (, ) (SEE FIG. 4) AROUND THE 2 X 2 x 300 m3 VERTICAL
CONDUCTOR (FIG. 5), CALCULATED USING THE FDTD METHOD. THE

VERTICAL CONDUCTOR IS EXCITED AT ITS BOTTOM BY A 1 m HIGH LUMPED

CURRENT SOURCE, WHICH PRODUCES A GAUSSIAN PULSE HAVING A HALF

PEAK WIDTH OF 67 ns

O=rx/4 O=x/2
7, m vertical horizontal vertical
14 66 95 83
35 63 76 73
71 63 70 71
141 62 66 70
TABLE VII

MAGNITUDES OF ELECTRIC FIELD (IN PERCENT OF THE MAGNITUDE OF THE
CORRESPONDING ELECTRIC FIELD OF A SPHERICAL TEM WAVE) AT
DIFFERENT POINTS (7, #) (SEE FIG. 4) AROUND THE 1 x 1 x 300 m3 VERTICAL
CONDUCTOR (FIG. 5), CALCULATED USING THE FDTD METHOD. THE
VERTICAL CONDUCTOR IS EXCITED AT ITS BOTTOM BY A 1 m HIGH LUMPED
CURRENT SOURCE, WHICH PRODUCES A GAUSSIAN PULSE HAVING A HALF
PEAK WIDTH OF 67 ns

o= rm/4 O=7/2

7, m vertical horizontal vertical
14 74 100 20
35 70 82 80
71 69 76 77
141 69 72 76

conductor (Fig. 5). Tables VI and VII show the magnitudes of
vertical and horizontal electric fields at different points around
these vertical conductors, calculated using the FDTD method.
Note that, in calculations presented in this Appendix, the spac-
ing between the vertical conductor axis and the right-hand side
absorbing boundary wall in Fig. 5 was moved from 20 to 150 m.
In a spherical TEM wave, vertical and horizontal electric fields
at @ = 7 /4, and vertical electric field at § = 7/2 should be the
same. One can see from Tables VI and VII that the overall elec-
tromagnetic field structure far away from the vertical conductor
approaches that of TEM wave.

APPENDIX IV

VERTICAL E-FIELD PRODUCED BY A 1-m LONG
CURRENT DIPOLE

In order to investigate the dependencies of scattered current
magnitude on the thickness of vertical conductor and on the
pulse width, we calculated vertical electric fields produced by a
1-m long vertical current dipole shown in Fig. 19. This current
dipole is energized by a single cycle, sinusoidal current pulse,
which has a negative initial half cycle, a magnitude of 1 kA,
and a total duration 7 = 200 ns (f = 5MHz) or 100 ns (f =
10 MHz). This current pulse is a rough approximation to the
bipolar scattered current (Fig. 9).

Current dipole .
\\.\ 8

| Upward E-fields

T

™4 Single-cycle
" sinusoidal current

Fig. 19. A 1 m long vertical current dipole, on which a single cycle sinusoidal
current pulse flows.
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Fig. 20. 'Waveforms of vertical electric field produced by a single cycle sinu-
soidal current pulse on a 1 m long vertical dipole: (a) f = 5 MHz (total duration
7 = 200ns). (b) f = 10 MHz (7 = 100 ns). Downward electric field is defined
as positive.

Fig. 20(a) shows waveforms of upward vertical electric field
at different horizontal distances from the dipole axis. It is clear
from Fig. 20(a) that the magnitude of upward vertical electric
field produced by the dipole decreases rapidly with increasing
the horizontal distance.

Fig. 20(b) is similar to Fig. 20(a) but for 7 = 100 ns (f =
10MHz). It is clear from Fig. 20(b) that the magnitude
of downward vertical electric field produced by the dipole
decreases as the pulse becomes narrower. Within few meters
from the 1-m current dipole, the static component of electric
field, which is related to time integral of current, is dominant.
Therefore, the electric field produced by the dipole at such
horizontal distances decreases as the pulse gets narrower while
its magnitude is the same.
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