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Abstract: Two different approaches to the computation of electric 
fields from the lightning return stroke in the time domain are 
compared and discussed. These approaches are the dipole technique 
and the monopole technique. Lightning channel is modeled as a 
linear antenna. It is shown analytically for the case of an arbitrary 
source distribution on the antenna that both these techniques yield the 
same total fields and same Poynting vectors and therefore are 
equivalent. However, the expressions for the individual field 
components in time domain for these techniques, traditionally 
identified by their distance dependence as electrostatic, induction, 
and radiation terms, are different. The differences between the 
corresponding field components are considerable at close ranges, but 
become negligible at far ranges. 

INTRODUCTION 

Rubinstein and Uman [l]  discussed two equivalent approaches to 
calculating the electric fields produced by a specified source. The 
first approach, the so-called dipole technique, involves 

- 
(1) the specification of current density J ; 
(2) the use of J to find the vector potential A ; 
( 3 )  the use of A and the Lorentz condition to find the scalar 

potential 4; 
(4) the computation of electric field E using 2 and qi 

( 5 )  the computation of magnetic field B using A . 
In this technique, the source is described only in terms of current 
density, and the field equations are expressed only in terms of 
current. The use of the Lorentz condition assures that the current 
continuity equation, which is not explicitly used in this technique, is 
satisfied. 

- - 
- 

- - 

The second approach, the so-called monopole technique, involves 

- 
(1) the specification of current density J (or charge density p); - 
(2) the use of J (or p) and the continuity equation to find p (or 

the use of J to find 2 and p to find 4; 
the computation of electric field E using A and qi 

the computation of magnetic field B using A . 

1 >; 

- ( 3 )  

(4) 

( 5 )  

In this technique, the source is described in terms of both current 
density and charge density, and the field equations are expressed (a) 

- - 
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in terms of charge density, or (b) in terms of current, or (c) in terms 
of both charge density and current. The current continuity equation is 
needed to relate the current density and charge density. There is no 
need for the explicit use of the Lorentz condition in this technique, 
although scalar and vector potentials do satisfy the Lorentz condition. 

Rubinstein and Uman [l]  used both the dipole and monopole 
techniques to derive expressions for electric fields for the case of a 
travelling step-function wave along a vertical antenna. Even though 
expressions for electric fields from the two techniques are very 
different in their structure, Rubinstein and Uman [l]  were able to 
show numerically that they are equivalent. Later, Safaeinili and Mina 
[2] established the analytical equivalence between the two 
expressions for electric fields derived in [ 11. In this paper, we extend 
these studies to an arbitrary source distribution on a vertical antenna 
and derive general expressions for electric field using the two 
approaches. These two expressions are analytically equivalent, 
eventhough different in form. We also show that the traditional 
division of electric field in the time domain into electrostatic, 
induction, and radiation components, based on these components' 
distance dependence, is not unique and depends upon the approach 
used. 

Since the dipole technique uses Lorentz condition explicitly, it is 
called in this paper the Lorentz condition approach. Similarly, the 
monopole technique is called the continuity equation approach since 
it uses the continuity equation explicitly. 

THEORY AND ANALYSIS 

The Lorentz Condition Approach 

The lightning return-stroke channel can be modeled as a straight line 
fixed at one end A, with the other end extending with speed v. The 
geometry of the problem is shown in Fig. 1. The current on the 
lightning channel is represented by i(z:t), where z' is the position 
along the z-axis with the origin at the base of the channel, and t is the 
time. At time GO the return stroke starts to propagate from origin A. 
The observer at the fixed field point P 'sees' the return stroke starting 
to propagate from the origin at time t=r/c, where c is the speed of 
light. The retarded current at any elemental channel section dz' is 
given by i(z:t-R(z?/c), where z' is less than or equal to L'(t), the 
length of the return stroke channel 'seen' by the observer at P at time 
t. If the return-stroke wavefront moves at a constant speed v, then 
L'(i is obtained from the solution of the equation t= LSt+R(L?/c. 
L'(0 is less than the actual length of the channel v.t. Note that the 
assumption of constant return-stroke speed is not required in the 
derivations presented here. 
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In fact, the lightning channel can be considered to be composed of 
many electric dipoles of length dz'. Also, the current is assumed to 
be constant over the length of the dipole. Field expressions in the 
time domain, with specific application to lightning, are derived in [ 3 ] ,  
and later developed by [1,4,5,6,7]. 

4 II 

A 
Figure 1. Geometry of the problem. 

The vector potential at P due to the entire extending channel is given 
by (equation 9 of [ 5 ] )  

where z is a time less than or equal to time t. At time 7, return-stroke 
wavefront is "seen" at a height L'(7) by the observer at P and L'(z) is 
less than or equal to L'(t). Note that in equation (1) we have not 
considered the presence of ground, usually assumed to be perfectly 
conducting and replaced by the channel image. The total electric 
field can be calculated using the relation 

- a 2  
at 

- 1 a@ 
c2 at 

E = - V @ - -  

where @an be obtained from the Lorentz condition 

V A + - - = O , ~ S  

f 

$(r,O, t )  = - c2 I V  Adz 
r t  c 

Taking the divergence of (1) it can be shown that 

1 L ~ Z )  - rcos e dL'(z) +- ~ ( L ' , z  - R(L') / c)- 
~ ~ G E , c ~  cR2 (L ' )  dz 

Substituting (4) into (3 )  and interchanging the order of integration, an 
expression for the scalar potential completely in terms of current can 
be obtained. As time increases from r/c to t, the channel length L'(9 

increases monotonically from 0 to L'(t). 
integration can be changed as follows according to the standard rule. 

Therefore the order of 

f L'(T) L ' ( r )  f 

r I c  I I - I I  0 0 z  
(5 )  

where the lower limit 7 = tb is the time at which the observer at the 
field point 'sees' the return-stroke front at height z' for the first time. 
For a constant return-stroke speed v, 

2' R(2') T=- W )  + R ( W ) )  = -+- 
V C v c  

Performing the operations explained above and after some 
reductions, we get an expression for scalar potential as 

w , e , o  = 

Taking the gradient of equation (6), V4 and the time derivative of 

equation (I), dA / a t ,  we get an expression for electric field 
according to equation (2)  as given below: 

- 

Lr' 0 

Ly t: 

+ L e  
4Z&0 

1 ,.case -cosa(L')cosp(L')  R (L ' )  -- r i(L',t  - -)- 

+-e i(L',t - -)- 

4?r&0 c2 R (L')  c dt 
1 sin e + cosa(L')sin P ( L ' )  R(L')  dL' 

4Z&" c2 R( L ' )  c dt 

In equation (7), dLYdt is the speed of the current wavefront as 'seen' 
by the observer at P, which is different from the real speed v. Also, 
from Fig. 1 we get cosa(z7 = -(z'~cose)/R(z7, cosp(z3 = (r- 
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z'cose)/R(z~, and sinp(z3 = z'sinWR(z3. In the electric field 
expression (7) terms containing the factors R3, c-'R2, and c-*R' are 
called the static component, the induction component, and the 
radiation component, respectively. The last two terms of the 
expression (7) containing dLYdt will have non-zero values only if 
there is a current discontinuity (non-zero current) at the wavefront. 
The lower limit of the time integral of the first term in (7), tb, is the 
time at which the return-stroke wavefront has reached the height z' 
for the first time, as 'seen' from the observation point. 

A common problem in lightning is to find the electric and magnetic 
fields at ground level from a lightning return-stroke, whose channel is 
straight and vertical above ground. In this case 8 = 90" and 6 = -2. 
The ground is assumed to be perfectly conducting. The effect of 
ground plane can be included by considering an image channel 
carrying an image current. The direction of this image current is the 
same as the current in the channel. ;- directed field components 
corresponding to the image channel are equal in magnitude but 
opposite in sign to the i -directed components in (7). However, 6 - 
directed components corresponding to the image channel are equal in 
both magnitude and sign to those in (7). Therefore adding the 
contribution of the image channel to (7), we get the complete field 
expression at ground (e=9Oo) as, 

1 ,  E, ( r , t )  = - Z 
q-,. 

"@I2 - 3sin a(2) j i  (z',z -R(z ' ) /c )dzdz '  

"(') 2 - 3 sin a ( z ' )  i(z', t - R(z ' )  / C )  dz' 
+ d cR2(z ' )  

- 
LYf) . 2 m a(2') di(2,t-  R(2')lc) dz' 

at c2R(z') 
dL' 

c R(L')  dt 
i(L',t - R(L')  /C ) -  

sin a(L ' )  

Individual terms on the right hand side of equation (8) are labeled the 
electrostatic, induction, and radiation components. It is customary to 
identify the electrostatic component by its R3 distance dependence, 
induction components by their R-' dependence, and radiation 
components by R' dependence. The last term in equation (8) 
becomes zero if there is no current discontinuity at the propagating 
wavefront, i.e. if i(L',t-R(L')/c) = 0. 

The Continuity Equation Approach 

The purpose here is to find an expression for electric field using both 
scalar potential and vector potential related by the continuity equation 
that defines the relationship between the charge density and current 
locally. The continuity equation that relates the charge density and 
current locally, but at retarded time is given in [7,8] as 

ap * ( z l ,  t - - - ai(z', t,--7)l R(z')  
(9) 

at 
t ~ = c , , , i .  

C 

In equation (9), the partial differentiation of retarded current with 
respect to the source coordinate z' is carried out keeping the retarded 
time constant. That is, the dependence of R (z3 on z' is ignored while 
taking the partial derivative. Note that as viewed by an observer at a 
remote point P, the relationship between the charge density and 
current could be different from that given in (9) [4]. 

The returnstroke starts from the ground level (z'=O). To satisfy the 
continuity equation (9) at t'=O, a point charge Q(t-r/c) is required at 
z'=O as the source for the current emerging from z'=O. This 
stationary point charge is given by, 

e ( t  - r  /c l  = - ji(0.t - r / c ) d z  (10) 
r l c  

The scalar potential from the whole lightning channel is given by 

The electric field can be obtained from equation (2). Using the 
spherical coordinate system centered at the starting point of the return 
stroke at ground (Fig. 1) and ignoring the presence of ground for the 
moment, the negative gradient of the scalar potential -V@ and the 
negative time derivative of the vector potential - aA / at can be 
found as described below. For -V@we have: 
- 4nEov(p = 

-G" 1 a " p P ( z i , t - ~ ( z i ) i c )  dz' 

r a e  Wz') 
Note that the first term of equation (12) is independent of the spatial 
coordinate 8. The maximum length of the channel L'(t), as seen 
from the field point, is a function of r,  8, and t. The distance to the 
field point from the differential channel segment R(z3 is a function of 
both r and 8, as given by equations (1 3). 

rz'sin e 
d e  R(z')  

= -  dR(z') 

Carrying out the differentiation of the second and third terms in 
equation (12) and using equations (13), we obtain the following 
expression 

1032 



-49T&,V@ = 

- 
E(r,O,t)=-r 

4 9 ~ ~ ~  ALr 

1 cR2 ( z ' )  at 

- 

-- p *(Z',t - R(z ' ) / c )  
R3 ( z ' )  
zisine a p y Z i , t - q z y c )  

at 

at 
sin 0 ai(z', t - R(z ' )  / c )  -- 

- 

r-z 'cos6 
R3 (2 ' )  

r - zicos e ap * (zi, t - ~ ( z ' )  / c )  - 
cRz(zI) at 

c2 R(z ' )  at 

- p * (Z',t - R ( z ' ) / c )  

COSO ai(z',t - R ( z ' ) / c )  +- 

iZ' 

The time derivative of vector potential (1) is given by, 

The general expression for electric field at a field point can be found 
by combining equations (14), (1 5 )  and (1  6), as given below in (1 7). 

We are interested in the return stroke field at ground level. For this 
case, 8 = 90°, and therefore cos 8 = 0, sin 8 = 1, and 6 = -; . The 

unit vector is now horizontal, pointing away from the channel. A 
perfectly conducting plane atz'=O is introduced to simulate the effect 

of earth. Using the image theory, we can replace this plane by an 
image channel carrying current in the same direction as that in the 
actual channel. Writing equations for the image channel and adding 
them to equation (17) for the case of 8 = 90°, we get the expression 
for E-field. as follows. 

1 ,  
E,(v,t) = -- Z 

2nE0 

p * (Z',t - R(z ' )  / C )  dz' J,+ 

dL' + L'(t) p *(L ' , t  -R(L ' ) /c ) -  
CR* (L ' )  dt 

1 dL' 
c2 R(L') dt 

+ i (L ' , t -R(L ' ) /c ) -  

Note that by definition, the current and charge density in (18) are 
related by the local continuity equation (9). Equation (18) contains 
both current and charge density, while equation (8) contains only 
current. The first three terms of equation (18) are similar to the 
corresponding terms of the expression for E-field derived in the book 
of Jefimenko [9] for a volume charge and current distribution whose 
boundary is fixed in space. 
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By analogy with equation (8), the first term of equation (18) can be 
considered as representing the electrostatic field (R3 dependence), the 
sum of second and fourth terms as representing the induction field 
(c-'R2 dependence), and the sum of third and last terms as 
representing the radiation field (c-'R' dependence). It appears that 
the electrostatic, induction, and radiation terms (except for the last 
two terms associated with the wavefront) in (18) can also be 
identified as containing z' times line charge density (charge), z' times 
time derivative of line charge density (time derivative of charge) or 
current, and derivative of current, respectively. If there is no current 
or charge discontinuity at the wavefront, the last two terms become 
zero. 

30000 - 

20000 - 
E 

P .z 10000 - 
s 
U 
U .- 
c 
0 - 
w 0- 

The magnetic field is given by B = V x A .  The magnetic field 
expressions are identical in both approaches since it is completely 
determined by the vector potential given by equation (1). The 
expression for magnetic field at ground is [3,4], 

1 -  
B(r,t) = - 2 @  

27r&0c 

dL'(t) +- z(L', t - R(L') /c)- 
2 7 4  c2 cR( L ' )  dt 

Non-Uniqueness of Field Components 

Fields calculated using the Lorentz condition approach and the 
continuity equation approach, given by equation (8) and (l8), 
respectively, should be identical since both are derived by rigorous 
application of electromagnetic principles and use the same basic 
assumptions. However the expressions look different in their 
structure. Therefore it would be interesting to compare the fields 
from (8) and (18) due to a known current distribution. It will be 
shown that while the total fields given by equations (8) and (18) are 
identical, the individual field components (electrostatic, induction, 
and radiation terms identified by their dependence on R) in these two 
equations are different. Take the following numerical example. 
Imagine the return stroke as a current wave that starts from the 
ground, and travels up with a constant speed v. In that case the 
current at any height z'at time t i s  equal to the current at ground at an 
earlier time t-zyv, where z'lv is the travel time between ground and 
the height z'. This is the so-called transmission line (TL) model and 
the current at any height is related to the current at ground by the 
following expression 

i (z ' , t )=i(O,t-z ' /v)  (20) 

Since there is no discontinuity at the wavefront for the TL model, the 
last term of equation (8) and the last two terms of equation (18) drop 
out of the equations. The charge density in equation (18) is 
calculated using the local continuity equation (9), which for the 
transmission line model can be rewritten as [4] 

(21) 
i(0,t- z ' l v  - R ( z ' ) / c )  p * (Z ' , t  - R ( z ' ) / c )  = 

V 

where v is the return stroke speed. 

For a typical subsequent return stroke current waveform [lo], 
computed electric fields at distances 50 m, 1 km, and 100 km are 
shown in Figs. 2, 3, and 4, respectively. In the curve labels in 
Figures 2, 3, and 4, LC indicates the terms in equation (8), and CE 
indicates the terms in equation (18). The labels EQ, EI, and ER 
indicate the electrostatic (R-3 dependence), induction (c-'R-' 
dependence), and radiation (c-~R-' dependence) field components. 
The following can be observed from Figs. 2, 3, and 4 and from 
equations (8) and (1 8). 

The total fields given by equations (8) and (1  8) are identical (for 
up to several decimal places when numbers are compared). 
In equation (1 8), the electrostatic and induction terms are given 
completely by the gradient of the scalar potential, while the 
radiation term is completely given by the time derivative of the 
vector potential. In contrast, in equation (8), both the gradient of 
the scalar potential and the time derivative of the vector 
potential contribute to the radiation field term. 
The electrostatic (R-3 dependence), induction (c-'R-* 
dependence), and radiation (c-*R-' dependence) terms in (8) are 
different from the corresponding terms in (18). The difference 
is considerable at 50 m (very close to the channel) and almost 
negligible at 100 km (far away from the channel). 
At 50 m (very close to the channel), the electrostatic term (R-3 
dependence) in equation (8) is larger than its counterpart in 
equation (1 8) (compare curves EQ-LC and EQ-CE in Fig. 2). 

EP-LC r = 5 0 m  EV-LC a EV-CE 

E R C E  

ELCE 

I 
ER-LC 

-10000 EILLC 

0 2 4 6 8 10 
Time (ps) 

Figure 2. Comparison of the total electric field and its 
components at a distance of 50 m predicted by the TL model and 
field expressions (8) and (18). "LC" Forentz condition) at the 
end of the label corresponds to equation (8), and "CE" 
(Continuity equation) to equation (18). 

The above analysis clearly shows that, even though the total electric 
field from a current or charge distribution is unique, the division of 
total electric field in the time domain into so-called electrostatic (R3 
dependence), induction (c-'R2 dependence), and radiation (c-'R' 
dependence) components is not unique. This was further verified by 
calculating the individual field components and the total fields using 
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six different return stroke models (BG, TCS, MTLE, MTLL, and DU 
models described in [lo]). Of these models, the BG and TCS 
models have current discontinuity at the wavefront whereas other 
models do not have wavefront current discontinuity. 

600 - 

- 
E 
5 400- 
E 
- 
.- 
U 
U 
L c x 200- - 
W 

0 -  

r = l  km 

0 2 4 6 6 10 
Time (11s) 

Figure 3. Same as Fig. 2, but at a distance of 1 km. 

r = I 0 0  km 

EV-LC 8 EV-CE 

ER-LC 8 ER-CE 

EILLC 8 EILCE 

1 -  

0 2 4 6 ; \ 10 
EQ-LC 8 EQ-CE -rime (I4 

Figure 4. Same as Fig. 2, but at a distance of 100 km. 

Note that in the Lorentz condition technique all field components are 
expressed in terms of current, while in the continuity equation 
technique both current and charge density are involved. In the 
Lorentz condition technique the gradient of scalar potential 
contributes to all the three field components, whereas in the 
continuity equation technique, it contributes only to the electrostatic 
and induction field components. In either case, the expression for 
magnetic field at ground level is the same, equation (19), since it 
depends only on the vector potential. We get the same Poynting 
vector whether we calculate it from equation pairs (8) and (19) or 
(1 8) and (I 9), since the total electric fields given by (8) and (1  8) are 

the same. 
equation (1 8). 

In fact equation (8) can be analytically derived from 

SUMMARY 

General expressions for electric field due to an arbitrary source 
distribution on a vertical lightning channel, modeled as a linear 
antenna, are derived using two different approaches, the Lorentz 
condition (or dipole) approach and the continuity equation (or 
monopole) approach. It is shown that both approaches give the same 
total field, but the individual field components, static, induction, and 
radiation, as identified by their distance dependence, are not unique. 
The differences between field components are significant at close 
distances and negligible at far distances. 
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